Serial No.	:		
Type of Design	:		

Ministry of Construction Department of Bridge

Date	:	
Project Name	:	
-		
Project No.	:	
Section	:	
Examiner	:	

Summary of Design									
Bridge Name	I			De	esign Date				
Road Name			De	Design by					
Location				En	ngineer				
GPS Coordinate	N		Е	Cla	lassification				
Bridge Length		•		Ro	oad Class				
Span Arrangement				Но	orizontal Al	ignment			
Carraigeway				Ve	ertical Aligi	nment			
Number of Lanes				De	eck Type			Thickness	
Skew Angle				Pa	wement Typ	pe		Thickness	
	Superstructure			Ве	earing Type				
Structural Type	Substructure			Ex	xpansion Jo	int Type			
				Со	Corrosion Prevention				
	Design			Gr	Ground Condition				
Specifications	Construction	Construction		Ere	ection Meth	nod			
	Materials					Name			
				Dia	iver	Width			
Grade of Steel				KI	ivei	HWL			
						LWL			
Weight of Steel						Name			
Unit Steel Weight				Ro	oad	Width			
						Name			
				Da	ailway	Width			
					anway				

No. Item	Content	Reference	 y Examiner	Result	Note
				1100411	11000
A General					
1 Type of Design	1) Indication of type and level of design	A-1-1			
	2) Understanding of purposes of design				
2 Qualification	1) Conformity to requirement				
of Designer	Academic background				
	Registration/Certificate of qualification				
	Experience				
3 Development Plan	1) Conformity to higher development plan				
	2) Consultation with relevant Authorities				
	3) Instruction of Ministry of Construction				
	4) Instruction of Ministry of Environment				
	5) Instruction of Ministry of Transport				
4 Design Standard	1) Application of suitable design standard	A-4-1			
	2) Application of suitable material standard	A-4-2			
	3) Application of suitable construction standard	A-4-3			
	4) Application of suitable geometric standard				
5 Previous Reports	1) Pre-feasibility study				
	2) Feasibility study				
	3) Environmental Impact Assessment				
	4) Topographic survey				
	5) Geological survey				
6 New technology	1) Application of new technology				

No	. Item	Content	Reference -	eck by Examiner	Result	Note
		Content	Reference		Result	Note
В	Design Condition					
1	Road class	1) Design speed				
		2) Number of lanes				
		3) Width of lane				
		4) Carriageway configuration				
		5) Width of walkway				
2	Natural condition	1) Temperature change	B-2-1			
		2) Rainfall				
		3) Ground condition				
		4) River condition				
		5) Scenic area				
3	Social condition	1) Impact to people				
		2) Land use				
4	Design loads	1) Vehicle load	B-4-1			
		2) Dynamic influence	B-4-2			
		3) Influence of multi-lane loading	B-4-3			
		4) Wind force				
		5) Earthquake				
		6) Combination of loads	B-4-6			
5	Clearance	1) Clearance under bridge				
		2) Clearance above road surface	B-5-2			
6	Pavement	1) Type of pavement				
		2) Thickness of pavement				

-			List for Bridge Design (Steel 1	Check by Examiner		
0.	. Item	Content	Reference		Result	Note
7	Superstructure					
1	Basic dimension	1) Bridge length	C-1-1			
		2) Span arrangement	C-1-2			
		3) Structural type	C-1-3			
		4) Support condition				
		5) Skew angle	C-1-5			
2	Main girder	1) Depth of plate girder	C-2-1			
		2) Arrangement of girders	C-2-2			
		3) Thickness of web plate	C-2-3			
		4) Thickness of lower flange				
		5) Thickness of upper flange	C-2-5			
		6) Position of horizontal stiffeners	C-2-6			
		7) Position of vertical stiffeners	C-2-7			
		8) Block size	C-2-8			
3	Cross frame/	1) Arrangement of cross frame				
	Cross beam	2) Type of cross frame				
4	Deck	1) Type of deck				
		2) Grade of reinforcement	C-4-2			
		3) Grade of concrete	C-4-3			
		4) Depth of deck	C-4-4			
		5) Direction of reinforcement				
		6) Size of reinforcement	C-4-6			
		7) Cover				
5	Materials	1) Grade of steel	C-5-1			
		2) Thickness of steel plate	C-5-2			
		3) Grade of high strength bolt	C-5-3			
		4) Block size	C-5-4			
6	Other	1) Slenderness ratio	C-6-1			
		2) HTB hole size/Edge distance	C-6-2			

No.	Item	Content	Reference -		by Examiner	Result	Note
		Content	Reference	_		Result	Title
	Substructure						
1	Abutment	1) Structural type	D-1-1				
		2) Elevation of bearing seat					
		3) Size of bearing seat	D-1-3				
		4) Support condition					
		5) Approach slab					
2	Pier						
		1) Structural type	D-2-1				
		2) Elevation of bearing seat					
		3) Size of bearing seat					
		4) Support condition					
E	Ancillary						
1	Bearing support	1) Type					
		2) Load capacity					
		3) Movement capacity	E-1-3				
		4) Corrosion prevention					
		5) Anchor					
2	Expansion joint	1) Type					
		2) Load capacity					
		3) Movement capacity	E-1-3				
		4) Corrosion prevention					
		5) Anchor					
3	Barrier/Parapet	1) Type					
		2) Height					
4	Drainage	1) Type					
		2) Location					
5	Maintenance facility	1) Type	E-5-1				
		2) Location					Department of Bridg

No	. Item	Content	Reference -	Check by Examiner	Result	Note
			11010101100		1100011	11000
F	Drawings					
	/Material List	4) 5	7.11			
1	Drawings	1) Contents	F-1-1			
		2) Size/Scale	F-1-2			
		3) Location				
		4) Project Title				
		5) Designer's signature/Date				
		6) Checker's signature/Date				
		7) Design condition				
		8) Plan view				
		9) Road alignment				
		10) Girder				
		11) Cross frame/Cross beam				
		12) Deck				
		13) Bar schedule				
		14) Bearing support				
		15) Expansion joint				
		16) Camber diagram				
		17) Construction plan				
2	Material list	1) Size				
		2) Grade				
		3) Quantity				
		4) Steel weight/carriageway area	F-2-4			
		5) Reinforcement/carriageway area	F-2-5			
		6) Paint area/Steel weight				
		6) Recyclable				
G	Cost Estimate					
		1) Unit costs				
		2) Cost reduction				

A-1-1 Indication of type and level of design

Level
Plannig
Preliminary
Basic
Detail

A-4-1 Application of suitable design standard

Application of suitable design standard
Typical Design Standard
Myanmar Road Bridge Design Standard
AASHTO LRFD Bridge Design Standard
Japan Highway Bridge Design Standard (JHBS)
AASHTO Bridge Design Standard

A-4-2 Application of suitable material standard

Application of Saturde material standard
Typical Material Standard
Myanmar Industrial Standard
Amerian Standard for Tesiting and Materials (ASTM)
Japan Industrial Standard (JIS)
AASHTO LRFD Bridge Design Standard

A-4-3 Application of suitable construction standard

1 ppireutien et suituele constituetien standard	
Typical Construction Standard	
Myanmar Road Bridge Construction Standard	
AASHTO LRFD Bridge Construction Standard	
Japan Highway Bridge Design Standard	

B-5-2 Clearance above road surface

Vertical Clarance	Explanation
4.5 m	
Less than 4.5 m	

B-2-1 Temperature change

State/Division	Temperature
Kachin, Sagaing, Chin	-10∼+50 Deg
Shan, Kayah, Kayin	-10∼+50 Deg
Mandalay, Magway	-10∼+50 Deg
Bago, Nay Pyi Taw	-10∼+50 Deg
Ayeyarwady, Rakhaine	-10∼+50 Deg
Yangon	-10∼+50 Deg
Mon, Tanintharyi	0∼+50 Deg

B-4-1 Vehicle load

Typical Design Load	Design Standard
HS20	AASHTO
HS25	AASHTO
JBHD B	JHBS

B-4-2 Dynamic influence (Example of AASHTO LRFD)

Component	IM
Deck Joints—All Limit States	75%
All Other Components:	
Fatigue and Fracture Limit State	15%
All Other Limit States	33%

B-4-3 Influence of multi-lane loading

(Example of AASHTO LRFD)

Number of Loaded Lanes	Multiple Presence Factors, m
1	1.20
2	1.00
3	0.85
>3	0.65

Table 3.4.1-1—Load Combinations and Load Factors

	DC									U	se One	of These	at a Tin	ne
Load Combination Limit State	DD DW EH EV ES EL PS CR SH	LL IM CE BR PL LS	WA	ws	WZ	FR	TU	TG	SE	EQ	BL	IC	СТ	cv
Strength I (unless noted)	γ_p	1.75	1.00	_	_	1.00	0.50/1.20	ΥīG	YSE	_	_	_	-	-
Strength II	Yp	1.35	1.00	_	-	1.00	0.50/1.20	YIG	YSE		-		_	_
Strength III	γ_p	_	1.00	1.4 0	37	1.00	0.50/1.20	ΥTG	YSE	_		_	_	_
Strength IV	Yp	_	1.00	_	-	1.00	0.50/1.20	·	_	1-	_	_	_	-
Strength V	Yp	1.35	1.00	0.4	1.0	1.00	0.50/1.20	ΥTG	YSE	_	_	_	_	-
Extreme Event I	γ_p	γEQ	1.00	_	-	1.00	_	-	_	1.00	_	_	_	_
Extreme Event II	γ_p	0.50	1.00	_	_	1.00	_	-	_	_	1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	0.3	1.0	1.00	1.00/1.20	ΥTG	YSE	-	_	_	_	-
Service II	1.00	1.30	1.00	_	_	1.00	1.00/1.20	-	_		-	_	_	-
Service III	1.00	0.80	1.00	_	_	1.00	1.00/1.20	YTG	YSE		_	_	_	_
Service IV	1.00	-	1.00	0.7	-	1.00	1.00/1.20	-	1.0	I	_	_	-	7
Fatigue I— LL, IM & CE only	_	1.50	-		_		_	_	_	-	_	_		_
Fatigue II— LL, IM & CE only	_	0.75	_	_	-	-	_	_	_	_	_	_	-	-

Permanent Loads

CR = force effects due to creep

DD = downdrag force

DC = dead load of structural components and nonstructural attachments

DW = dead load of wearing surfaces and utilities

EH = horizontal earth pressure load

EL = miscellaneous locked-in force effects resulting from the construction process, including jacking apart of cantilevers in segmental construction

ES = earth surcharge load

EV = vertical pressure from dead load of earth fill

Table 3.4.1-2-Load Factors for Permanent Loads, 7,

	Type of Load, Foundation Type, and	Load I	Factor
	Method Used to Calculate Downdrag	Maximum	Minimum
DC: Component	1.25	0.90	
DC: Strength IV	1.50	0.90	
DD: Downdrag	1.4	0.25	
	Piles, \(\lambda\) Method	1.05	0.30
	Drilled shafts, O'Neill and Reese (1999) Method	1.25	0.35
DW: Wearing Su	1.50	0.65	
EH: Horizontal E	arth Pressure		
 Active 	1.50	0.90	
 At-Rest 	1.35	0.90	
 AEP for ancl 	1.35	N/A	
EL: Locked-in Co	onstruction Stresses	1.00	1.00
EV: Vertical Eart	h Pressure		
 Overall Stab 	ility	1.00	N/A
 Retaining W 	alls and Abutments	1.35	1.00
 Rigid Buried 	Structure	1.30	0.90
 Rigid Frame 	1.35	0.90	
 Flexible Burn 	ied Structures	F 1000	1000000
o Metal I	Box Culverts and Structural Plate Culverts with Deep Corrugations	1.5	0.9
o Thermo	oplastic culverts	1.3	0.9
o All oth		1.95	0.9
ES: Earth Surcha	rge	1.50	0.75

PS = secondary forces from post-tensioning

SH = force effects due to shrinkage

Transient Loads

BL = blast loading

BR = vehicular braking force

CE = vehicular centrifugal force

CT = vehicular collision force

CV = vessel collision force

EQ = earthquake load

friction load

IC = ice load

IM = vehicular dynamic load allowance

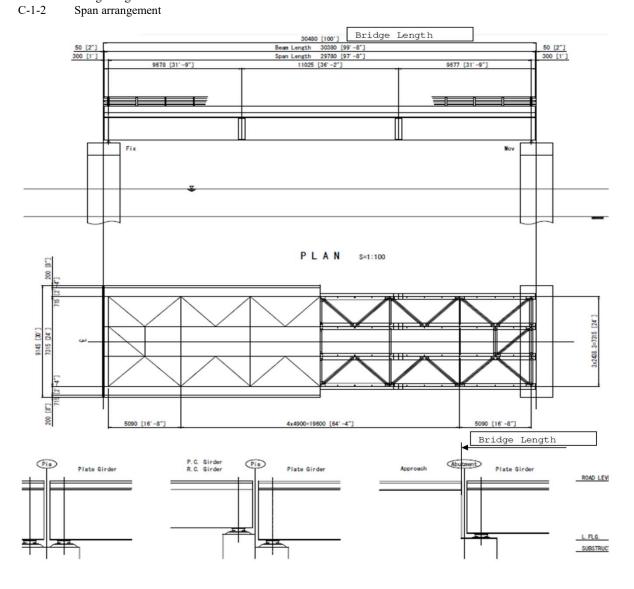
LL = vehicular live load

LS = live load surcharge

PL = pedestrian live load

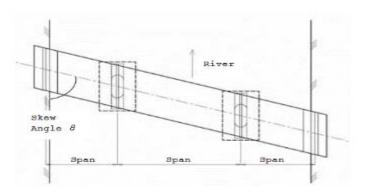
SE = force effect due to settlement

TG = force effect due to temperature gradient


TU =force effect due to uniform temperature

WA = water load and stream pressure

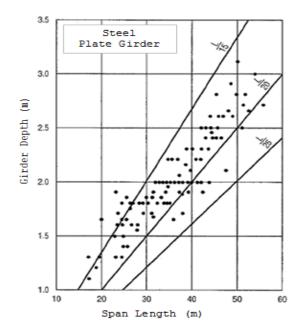
WL = wind on live load


WS = wind load on structure

C-1-1 Bridge length

C-1-5 Skew angle

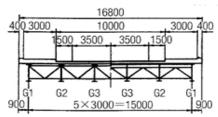
Recommendation $\theta \ge 75 \deg$



C-1-3 Structural type

Structural type
Type of Superstructure
Steel Plate Girder (non-composite)
Steel Plate Girder (composite)
Steel Box Girder
Steel Truss
Steel Arch
Steel Cable-stayed Bridge
Steel Suspension Bridge

Characterial Torres	Τ	Span Length (m)																								
Structural Type		0		10		20		30		40		50		60		70		90	100		110		120		130	
RC Box Culvert																										
RC Slab																										
Steel H Girder																										
Steel Plate Girder (Simple Span)																										
Steel Plate Girder (Continuous Span)																										
Steel Box Girder (Simple Span)																										
Steel Box Girder (Continuous Span)																										
Steel Truss (Simple Span)																										
Steel Truss (Continuous Span)																										


C-2-1 Depth of plate girder

C-2-2 Arrangement of girders

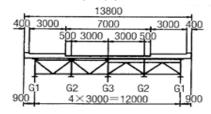
a) Major Trunk Road

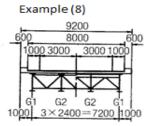
Example (1)

Example (2)

13500

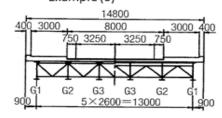
400 3000 9500 600

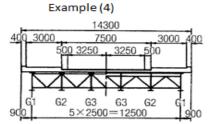

1000 3500 3500 1500

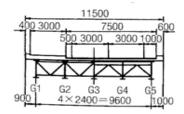

G1 G2 G3 G4 G5

900 4×2900=11600 1000

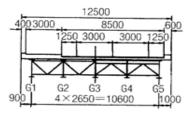
c) Sub-Trunk Road

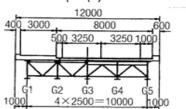

Example (7)

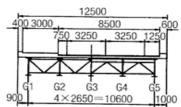



b) Trunk Road

Example (3)




Example (9)


Example (10)

Example (5)

Example (6)

C-2-3 Thickness of web plate

Minimum Thickness of Web of Plate Girder (mm)

Millimum Thickness of Web of Plate Girder (IIIII)										
Grade Horizntal Stiffener	SS400 SM400	SM490	SM490Y SM520							
Without Stiffener	b/152	b/131	b/124							
With 1 Stiffener	b/256	b/221	b/208							
With 2 Stiffeners	b/311	b/311	b/293							

JHBS

C-2-5 Thickness of upper flange

Minimum Thickness of Upper Flange Plate (mm)

	RC Deck Connection	Min. Thickness
She	ear Connectors welded on Flange	10

JHBS

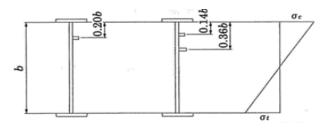
C-4-2 Grade of reinforcement

C-4-3 Grade of concrete

C-4-4 Depth of deck

Minimum Thickness of RC Deck (mm)

	, ,
Deck for Vehicle	160
Deck for Pedestrians	140

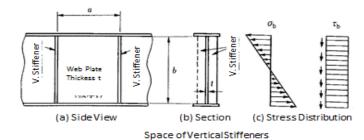

JHBS

C-4-6 Size of reinforcement

Common Practice

Deformed Reinforcement Bar					
D13	D16	D19	D22	D25	
D29	D32	D35	D38	D51	

C-2-6 Position of horizontal stiffeners



C-2-7 Position of vertical stiffeners

Max. Web Plate Depth without Vertical Stiffener

Grade	SS400 SM400 SMA400W	SMA490	SM490Y SM520 SMA490W	SM570 SMA570W
Max. Web Plate Depth b	70t	60t	57t	50r

t: Plate Thickness

C-5-1 Grade of steel

AASHTO Designation M270 (Equivalent ASTM Designation A709)

Grade		36	50	50S	50W	HPS50W
Max.	Plate Thickness	100	100	100	100	100
Min.	Tensile Strength (Mpa)	400	450	450	490	490
Min.	Yield Strength (Mpa)	248	344	344	344	344

JIS

	Thickeness (mm)	6-16	17-40	41-75	76-
SS400	Min. Tensile Strength (Mpa)	400	400	400	400
33400	Min. Yield Strength (Mpa)	245	235	215	215
SM400,	Min. Tensile Strength (Mpa)	400	400	400	400
SMA400W Min. Yield Stren	Min. Yield Strength (Mpa)	245	235	215	215
ISM490 ⊢	Min. Tensile Strength (Mpa)	490	490	490	490
	Min. Yield Strength (Mpa)	325	315	295	295
SM490Y,	Min. Tensile Strength (Mpa)	490	490	490	490
SMA490W	Min. Yield Strength (Mpa)	365	355	335	325
SM520	Min. Tensile Strength (Mpa)	520	520	520	520
SM520	Min. Yield Strength (Mpa)	365	355	335	325

C-5-2 Thickness of steel plate

Applicable Thickness of Steel Plate

Applicable Thickness of Steel Flate								
		Thickness of Steel Plate (mm)						
grade	6	8	16	25	32	40	50	100
SS400								
SM400A								
SM400B			_					
SM400C			_					
SM490A			\blacksquare					
SM490B			_					
SM490C			_					
SM490YA			=					
SM490YB			_					
SM520C								

JHBS

C-5-3 Grade of high strength bolt

Nominal Resistance of a Slip critical HT Bolt (kN)

TITLE TOURS	01 0 011	p crrerour r.
Grade Size	F10T	S10T
M20	66	66
M22	82	82
M24	95	95

JHBS

C-5-4 Block size

Common Practice

Max. Length	Max. Height (Width)
12 m	3.5 m

C-6-1 Slenderness ratio

Limiting Slenderness Ration

Member		l/r
Compression	Main Member	120
Compression	Secondary Member	150
Tension	Main Member	200
Tension	Secondary Member	240

JHBS

l : Unbraced length of member (mm)

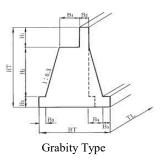
γ : Radius of gyration (mm)

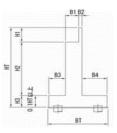
C-6-2 HTB hole size/Edge distance

Maximum Hole Size

Size	Standard	Over Size		
M20	22	24		
M22	24	28		
M24	26	30		

AASHTO LRFD

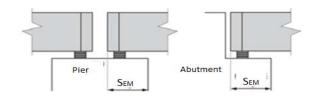

Minimum Edge Distance


Size	Sheared Edge	Rolled Edges of Plate/Shapes
M20	34	26
M22	38	28
M24	42	30

AASHTO LRFD

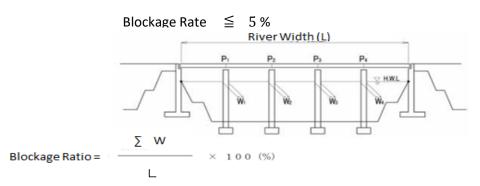
D-1-1 Structural type

Structural Type
Grabity Type
Inverse T Type
Butress Type
Frame Type



Inverese T Type

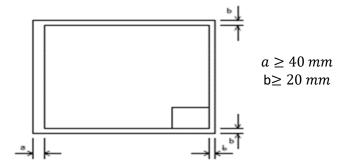
D-1-3 Size of bearing seat

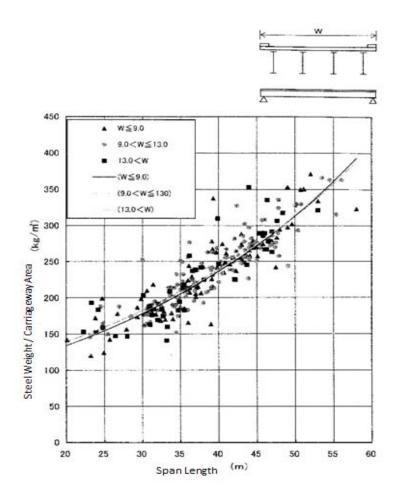

S $EM \ge 0.7 + 0.005 \times Span$

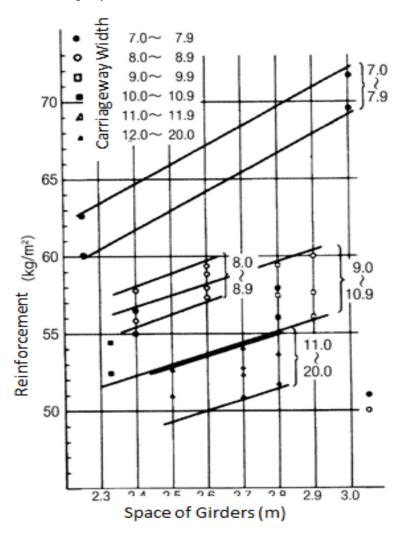
D-2-1 Structural type

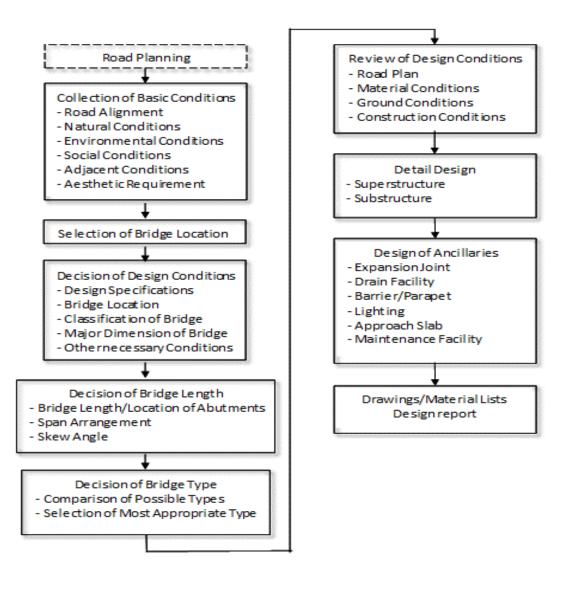
Structural Type
Grabity Type
Inverse T Type
Butress Type
Frame Type

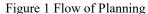
D-2-5 Blockage Rate




F-1-1 Contents


No.	Name of drawing	Scale	Necessary Information
1	Location	1/25,000	North Direction, Location,
		~ 1/50,000	Carriageway width
2	General view	1/50	Structural type, Design condition,
		~ 1/500	geological data, location of boring
3	Alignment plan		Horizontal, Vertical alignment,
			Coordinates
4	General view of structure	1/50	
		~ 1/500	
5	Detail of superstructure	1/20	Main girder, Transverse beam,
		~ 1/100	Cross frame, Floor system, Deck
			floor, Bearings, Expansion joint,
			Drainage, Barrier, Inspection way,
			Camber
6	Detail of substructure	1/20	Abutment, Pier
		~ 1/100	
7	Detail of foundation	1/20	Pile, Well, V
		~ 1/100	Caisson
8	Detail of temporary works	1/20	Retaining wall, Temporary bridge,
		~ 1/100	


F-1-2 Size/Scale


Size of Drawing is A1

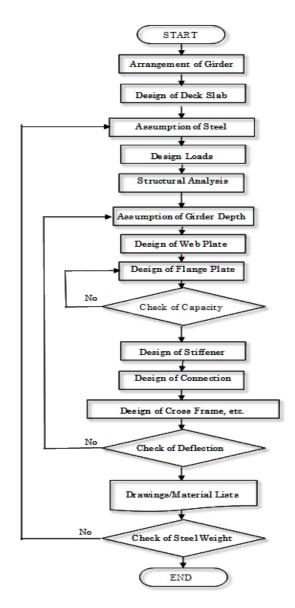


Figure 2 Flow of Design