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Preface 

The last three decades have been marked by the evolution of electronic computers 
and an enormous and wide-spread availability of computational power. This has 
boosted the development of computational methods and their application in engi- 
neering and in the analysis and design of structures, which extend from bridges to 
aircrafts and from machine elements to tunnels and the human body. New scientific 
subfields were generated in all engineering disciplines being described as "Compu- 
tational", e.g. Computational Mechanics, Computational Fluid Mechanics, Com- 
putational Structural Analysis, Computational Structural Dynamics etc. The Finite 
Element Method (FEM) and the Boundary Element Method (BEM) are the most 
popular of the computational methods. While the FEM has been long established 
and is most well known in the engineering community, the BEM appeared later 
offering new computational capabilities with its effectiveness, accuracy and low 
computational cost. 

Although the BEM is taught as a regular course at an ever increasing number of 
universities, there is a noticeable lack of a textbook which could help students as 
well as professional engineers to understand the method, the underlying theory and 
its application to engineering problems. An essential reason is that BEM courses 
are taught mainly as advanced graduate courses, and therefore much of the under- 
lying fundamental knowledge of mathematics and mechanics is not covered in the 
respective undergraduate courses. Thus, the existing books on BEM are addressed 
rather to academia and researchers who, somehow, have already been exposed to 
the BEM than to students following a BEM course for the first time and engineers 
who are using boundary element software in industry. 

This observation stimulated the author to write the book at hand. His research in 
the development of BEM during the last 25 years as well as the experience he ac- 
quired by teaching for many years the course of Boundary Elements at the Civil 
Engineering Department of the National Technical University of Athens, Greece, 
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justify this endeavor. The author's ambition was to make BEM accessible to the 
student as well to the professional engineer. For this reason, his main task was to 
organize and present the material in such a way so that the book becomes "user- 
friendly" and easy to comprehend, taking into account only the mathematics and 
mechanics to which students have been exposed during their undergraduate studies. 
This effort led to an innovative, in many aspects, way of presenting BEM, includ- 
ing the derivation of fundamental solutions, the integral representation of the solu- 
tions and the boundary integral equations for various governing differential equa- 
tions in a simple way minimizing a recourse to mathematics with which the student 
is not familiar. The indicial and tensorial notations, though they facilitate the 
authors' work and allow to borrow ready to use expressions from the literature, 
have been avoided in the present book. Nevertheless, all the necessary preliminary 
mathematical concepts have been included in order to make the book complete and 
self-sufficient. 

In writing the book, topics requiring a detailed study for a deep.and thorough un- 
derstanding of the BEM, have been emphasized. These are: 

(i) The formulation of the physical problem. 

(ii) The formulation of the mathematical problem, which is expressed by the 
governing differential equations and the boundary conditions (boundary 
value problem). 

(iii) The conversion of the differential equations to boundary integral equations. 
This topic familiarizes the reader with special particular solutions, the so- 
called fundamental solutions, shows how they are utilized and helps to com- 
prehend their singular behavior. 

(iv) The transformation of domain integrals to boundary line integrals or their 
elimination, in order to obtain pure boundary integral equations. 

(v) The numerical solution of the boundary integral equations. This topic, which 
covers a significant part of the book, deals with the numerical implementa- 
tion of BEM rendering a powerful computational tool for solving realistic 
engineering problems. It contains the discretization of the boundary into 
elements, the modeling of its geometry, the approximation of the boundary 
quantities, as well as the techniques for the evaluation of regular and singular 
line integrals and in general the procedure for approximating the actual 
problem by a system of linear algebraic equations. 

(vi) A detailed description of the FORTRAN programs, which implement the nu- 
merical procedure for the various problems. The reader is provided with all 
the necessary information and the know-how so that he can write his own 
BEM-based computer programs for problems other than those included in 
the book. 
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(vii) The use of the aforementioned computer programs for the solution of repre- 
sentative problems and the study of the behavior of the corresponding physi- 
cal system. 

Throughout the book, every concept is followed by example problems, which have 
been worked out in detail and with all the necessary clarifications. Furthermore, 
each chapter of the book is enriched with problems-to-solve. These problems serve 
a threefold purpose. Some of them are simple and aim at applying and better un- 
derstanding the presented theory, some others are more difficult and aim at extend- 
ing the theory to special cases requiring a deeper understanding of the concepts, 
and others are small projects which serve the purpose of familiarizing the student 
with BEM programming and the programs contained in the CD-ROM. 

The latter class of problems is very important as it helps students to comprehend 
the usefulness and effectiveness of the method by solving real-life engineering 
problems. Through these problems students realize that the BEM is a powerful 
computational tool and not an alternative theoretical approach for dealing with 
physical problems. My experience in teaching BEM shows that this is the students' 
most favorite type of problems. They are delighted to solve them, since they inte- 
grate their knowledge and make them feel confident in mastering BEM. 

The CD-ROM which accompanies the book contains the source codes of all the 
computer programs developed in the book, so that the student or the engineer can 
use them for the solution of a broad class of problems. Among them are general 
potential problems, problems of torsion, thermal conductivity, deflection of mem- 
branes and plates, flow of incompressible fluids, flow through porous media, in 
isotropic or anisotropic, homogeneous or composite bodies, as well as plane elas- 
tostatic problems in simply or multiply connected domains. As one can readily find 
out from the variety of the applications, the book is useful for engineers of all dis- 
ciplines. The author is hopeful that the present book will introduce the reader to 
BEM in an easy, smooth and pleasant way and also contribute to its dissemination 
as a modem robust computational tool for solving engineering problems. 

In closing, the author would like to express his sincere thanks to his former student 
and Visiting Assistant Professor at Texas A&M University Dr. Filis Kokkinos for 
his carefully reading the manuscript and his suggestions for constructive changes. 
His critic and comments are greatly appreciated. Thanks also belong to my doctoral 
student Mr. G.C. Tsiatas, M.Sc., for checking the numerical results and the deriva- 
tion of several expressions. 

J. T. KA TSIKADELIS 

Athens 

January 2002 



This Page Intentionally Left Blank



I . . . .  _ _ , . . . .  I n  , ,  

Table of Contents 
I I  . . . . . . . .  I - - - ,  I I  I I[ . . . . . . . . . . . .  

Preface ......................................................................................................... VII 

Chapter  1 Introduction ...................................................................................... 1 

1.1 Scope  o f  the book  ...................................................................................... 1 

1.2 B o u n d a r y  Elements  and Fini te  E lement s  .................................................. 2 

1.3 Historical  d e v e l o p m e n t  o f  the B E M  .......................................................... 5 

1.4 Structure  o f  the b o o k  ................................................................................. 7 

1.5 C D - R O M  contents  ..................................................................................... 9 

1.6 References  ................................................................................................. 9 

Chapter  2 Preliminary Mathematical Concepts ............................................ 13 

2.1 In t roduct ion  ............................................................................................. 13 
2.2 The  Gauss -Green  theo rem ....................................................................... 13 

2.3 The  d ivergence  theo rem o f  Gauss  ........................................................... 15 

2.4 G r e e n ' s  second ident i ty  ........................................................................... 16 

2.5 The  adjoint  opera tor  ................................................................................ 17 

2.6 The  Dirac delta funct ion  .......................................................................... 18 

2.7 References  ............................................................................................... 23 

P rob lems  .......................................................................................................... 23 

Chapter  3 The BEM for Potential Problems in Two Dimensions ................ 25 

3.1 In t roduct ion  ............................................................................................. 25 

Xl 



XII BOUNDARY ELEMENTS 

3.2 Fundamental  solution .............................................................................. 26 

3.3 The direct BEM for the Laplace equation ............................................... 28 

3.4 The direct BEM for the Poisson equation ............................................... 34 

3.4.1 Application of  Green ' s  identity .................................................... 34 

3.4.2 Transformation of  the Poisson equation to 
the Laplace equation ..................................................................... 34 

3.5 Transformation of  the domain integrals to boundary integrals ............... 36 

3.6 The BEM for potential problems in anisotropic bodies .......................... 39 

3.6.1 Integral representation of  the solution .......................................... 39 

3.6.2 Fundamental  solution ................................................................... 40 

3.6.3 Boundary integral equation .......................................................... 43 

3.7 References ............................................................................................... 44 

Problems .......................................................................................................... 46 

Chapter 4 Numerical Implementation of the BEM ....................................... 47 

4.1 Introduction ............................................................................................. 47 

4.2 The BEM with constant boundary elements ........................................... 49 

4.3 Evaluation of  line integrals ...................................................................... 53 

4.4 Evaluation of  domain integrals ................................................................ 57 

4.5 The Dual Reciprocity Method for Poisson 's  equation ............................ 58 

4.6 Program LABECON for solving the Laplace equation 
with constant boundary elements ............................................................ 61 

4.7 Domains  with multiple boundaries .......................................................... 85 

4.8 Program L A B E C O N M U  for domains with multiple boundaries  ............ 86 

4.9 The method o f subdoma ins  ..................................................................... 96 

4.10 References ............................................................................................. 102 

Problems ........................................................................................................ 104 

Chapter 5 Boundary Element Technology ................................................... 105 

5.1 Introduction ........................................................................................... 105 

5.2 Linear elements ..................................................................................... 107 

5.3 The BEM with linear boundary elements .............................................. 111 

5.4 Evaluation of  line integrals on linear elements ..................................... 115 

5.4.1 Outside integration ..................................................................... 116 
5.4.2 Inside integration ........................................................................ 118 

5.4.2.1 Integrals with logarithmic singularity ........................... 118 
5.4.2.2 Integrals with Cauchy-type singularity ......................... 126 

5.4.3 Indirect evaluation of  the diagonal influence coefficients .......... 127 



Table of Contents XIII 
, -  

5.5 H i g h e r  order  e l emen t s  ........................................................................... 129 

5.6 Nea r - s ingu la r  integrals  .......................................................................... 136 

5.7 Re fe rences  ............................................................................................. 140 

P r o b l e m s  ........................................................................................................ 142 

Chapter  6 Applications .................................................................................. 143 

6.1 In t roduc t ion  ........................................................................................... 143 

6.2 Tors ion  o f  non-c i rcu la r  bars .................................................................. 143 

6.2.1 The  warp ing  funct ion .................................................................. 143 

6.2.2 Eva lua t ion  o f  s t resses  ................................................................. 155 

6.2.3 P rog ram T O R S C O N  for so lv ing  the tors ion p r o b l e m  

with cons tant  e l ement s  ................................................................ 157 

6.2.4 Tors ion  o f  anisot ropic  bars ......................................................... 171 

6.3 Def lec t ion  o f  elastic m e m b r a n e s  ........................................................... 174 

6.4 B e n d i n g  o f  s imply  suppor ted  plates  ...................................................... 178 

6.5 Heat  t ransfer  p r o b l e m s  .......................................................................... 181 

6.6 Fluid  f low p rob l ems  .............................................................................. 187 

6.7 Conc lus ions  ........................................................................................... 193 

6.8 Refe rences  ............................................................................................. 197 

P rob lems  ........................................................................................................ 198 

Chapter  7 The BEM for Two-Dimensional Elastostatic Problems ............ 201 

7.1 In t roduct ion  ........................................................................................... 201 

7.2 Equa t ions  o f  p lane  elast ici ty ........................................................ .......... 201 

7.2.1 Plane strain ................................................................................. 201 
7.2.1.1 Kinemat ic  re la t ions  ....................................................... 202 

7.2.1.2 Cons t i tu t ive  relat ions ..................................................... 203 

7.2.1.3 Equi l ib r ium equat ions  ................................................... 205 

7.2.1.4 B o u n d a r y  condi t ions  ..................................................... 206 

7.2.1.5 Initial s t resses and strains .............................................. 2"08 

7.2.2 Plane stress ...... . .......................................................................... 209 

7.3 Be t t i ' s  reciprocal  ident i ty  ...................................................................... 211 

7.4 F u n d a m e n t a l  solut ion ............................................................................ 213 

7.5 St resses  due to a unit  concen t ra ted  force ............................................... 219 

7.6 B o u n d a r y  t ract ions due to a unit  concen t ra ted  force ............................. 220 

7.7 Integral  representa t ion  o f  the solut ion ................................................... 221 

7.8 B o u n d a r y  integral equa t ions  .................................................................. 224 

7.9 Integral  represen ta t ion  o f  the s t resses  .................................................... 228 



XIV BOUNDARY ELEMENTS 

7.10 Numerical  soiution of  the boundary integral equations ......................... 230 

7.10.1 Evaluation of  the unknown boundary  quantities ...................... 230 

7.10.2 Evaluation of  displacements in the interior o f  the body ........... 232 

7.10.3 Evaluation of  stresses in the interior o f  the body ..................... 233 

7.10.4 Evaluation of  stresses on the boundary  .................................... 233 

7.11 Body forces ........................................................................................... 234 

7.11.1 Direct numerical  evaluation ...................................................... 234 

7.11.2 Evaluation using a particular solution ...................................... 235 

7.11.3 Transformation of  the domain integrals 
to boundary integrals ................................................................ 238 

7.12 Program E L B E C O N  for solving the plane elastostatic problem 
with constant boundary elements .......................................................... 241 

7.13 References ............................................................................................. 279 

Problems ........................................................................................................ 281 

A p p e n d i x  A Der iva t ives  o f t  ......................................................................... 285 

A p p e n d i x  B Gauss Integration ..................................................................... 289 

B. 1 Gauss integration of  a regular function ................................................. 289 

B.2 Integrals with a logarithmic singularity ................................................. 298 

B.3 Double integrals of  a regular function ................................................... 298 

B.3. l Gauss integration for rectangular domains  ................................. 298 

B.3.2 Gauss integration for triangular domains  ................................... 300 

B.4 Double singular integrals ....................................................................... 305 

B.4.1 Domain integrals of  the fundamental  solution for 
the Laplace equation ................................................................... 305 

B.4.2 Domain integrals of  the fundamental  solution for 
the Navier  equations ................................................................... 307 

B.5 References ............................................................................................. 307 

A p p e n d i x  C Answers to selected problems ................................................. 309 

Author Index .................................................................................................... 321 

Subject Index .................................................................................................... 325 



Chapter 1 

Introduction 

1.1 Scope of the book 

Since the Boundary Element Method (BEM) became an appealing area of research, 
twenty five years ago, several books have been published on this method [1-15]. 
These books present the theoretical background and the numerical application of 
this modern tool of analysis. Hence, it would be fair to pose the question "what is 
the purpose of writing one more book on the topic?". The answer is quite simple. 
All the existing books, although they describe comprehensively the method, for the 
most part they are written concisely. It could also be said that they are for academic 
use, and especially for the scientist that has already been exposed to the method 
and not for the student who studies the BEM for the first time. Moreover, since the 
BEM as a modern tool of solving engineering problems is intended for engineers, it 
must be presented in a way that can get across to them and bearing always in mind 
that extended utilization of advanced mathematics carries away authors in pre- 
senting the method rather as a subject of applied mathematics than a nice tool for 
solving engineering problems. For example, although use of tensors provides a 
concise and elegant formulation, it puts engineering students off. For this purpose, 
the book at hand presents the BEM and provides derivation of all the necessary 
equations by incorporating only fundamental concepts and basic knowledge from 
differential and integral calculus, and numerical integration. Since, the scope of this 
book is to present the BEM in a comprehensive way and not to study in-depth all 
its potentials, the application of the method is limited to simple l~roblems. Some of 
them are boundary value problems governed by the Laplace or Poisson equation in 
two dimensions and plane elasticity problems. A considerable portion of the book 
is devoted to the numerical implementation of the method and its application to 
engineering problems. In all cases, computer programs are written in FORTRAN 
language. These programs, even though they solve important engineering prob- 
lems, they are not professional but educational. Mainly, they present the logical 
steps required for their construction and they familiarize students with the develop- 
ment of a BEM software. 
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The author anticipates that the book at hand will help students as well as field 
engineers to understand the BEM and apply it to problems they are faced with, 
either through the computer programs provided with the book or even their own. In 
addition, it is the author's strong belief that this book will contribute to a wider 
acceptance of the BEM as the most modem computational method. 

1.2 Boundary Elements and Finite Elements 

The Boundary Element Method (BEM) constitutes a technique for analyzing the 
behavior of mechanical systems and especially of engineering structures subjected 
to external loading. The term loading is used here in the general sense, referring to 
the external source which produces a non-zero field function that describes the 
response of the system (temperature field, displacement field, stress field, etc.), and 
it may be heat, surface tractions, body forces, or even non-homogeneous boundary 
conditions, e.g. support settlement. 

Study of the behavior of structures is achieved today using computers. The reason 
is quite obvious, the low cost of the numerical versus the expensive experimental 
simulation. Numerical modeling can be used to study a wide variety of loadings 
and geometries of a structure and to determine the optimum design solution, before 
proceeding to its construction. 

The method used for the numerical analysis of structures during the last 30 years is 
mainly the Finite Element Method (FEM). It is the method with which realistic 
problems of engineering are being solved, that is the analysis of structural elements 
of arbitrary geometry, arbitrary loading, variety of constitutive relations, with lin- 
ear or non-linear behavior, in two or three dimensions. Justifiably, the FEM has 
been valued during the last 30 years as a modern computational tool. 

A reasonable question to ask is "why do we need the BEM since we already have 
the FEM that solves engineering problems?". The answer is that a modeling with 
finite elements can be ineffective and laborious for certain classes of problems. So 
the FEM, despite the generality of its application in engineering problems, is not 
free of drawbacks. The most important of which are: 

(i) Discretization is over the entire domain occupied by the body. Hence, gen- 
eration and inspection of the finite element mesh exhibit difficulty and are 
both laborious and time consuming, especially when the geometry of the 
body is not simple. For example, when there are holes, notches or comers, 
mesh refinement and high element density is required at these critical re- 
gions of large solution gradients (Fig. 1.1 a). 

(ii) Modification of the discretized model to improve the accuracy of the solu- 
tion or to reflect design changes can be difficult and requires a lot of effort 
and time. 

(iii) For infinite domains, e.g. half-space or the complementary domain to a finite 
one, fabrication of fictitious closed boundaries is required in order to apply 
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the FEM. This reduces the accuracy and some times may result in spurious 
or incorrect solutions. 

(iv) For problems described by differential equations of fourth or higher order 
(i.e., plate equations, or shell equations of sixth, eighth or higher order), the 
conformity requirements demand such a tedious job that FEM may become 
impractical. 

(v) Although the FEM computes accurately the field function, which is the un- 
known of the problem, it is ineffective in determining its derivatives. The 
accuracy drops considerably in areas of large gradients. 

_ ,  

_ 

v v 

(a) FEM 

(b) BEM 

Figure 1.1 (a) Domain (FEM) and (b) boundary (BEM) discretization. 
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Drawbacks (i) and (ii) can be overcome by using updated releases of advanced pro- 
fessional finite element software, such as NASTRAN, which are equipped with 
automatic and adaptable mesh generators. Essentially, the task of generating a fi- 
nite element mesh is a hard geometric problem, and in several cases, it may prove 
to be far more difficult than the physical problem which is to be solved by the 
FEM. The new disadvantage, though, is that the codes for creating FEM meshes 
are closed, and any effort to produce them requires specialized knowledge from a 
different scientific area. An attempt, by the engineer, to learn the necessary mate- 
rial will only distract him from his original goal, which is to solve a physical prob- 
lem. 

On the contrary, the Boundary Element Method possesses many advantages, the 
most important of which are: 

(i) Discretization is only over the boundary of the body, making the numerical 
modeling with the BEM easy (see Fig. 1.1 b) and reducing the number of un- 
knowns by one order. Thus, a remodeling to reflect design changes becomes 
simple. 

(ii) For infinite domains, the problem is formulated simply as an exterior one. 
Apparently, the fundamental solution has to satisfy some conditions at infin- 
ity, such as Sommerfeld's radiation condition for problems in dynamics. In 
this manner, computer programs developed for finite domains can be used, 
with just few modifications, to solve problems in infinite domains. This is 
not possible with the FEM. 

(iii) The method is particularly effective in computing the derivatives of the field 
function (e.g., fluxes, strains, stresses, moments). It can easily handle con- 
centrated forces and moments, either inside the domain or on the boundary. 

(iv) The BEM allows evaluation of the solution and its derivatives at any point of 
the domain of the problem and at any instant in time. This is feasible because 
the method uses an integral representation of the solution as a continuous 
mathematical expression, which can be differentiated and utilized as a 
mathematical formula. This is impossible with the FEM, since the solution is 
obtained only at the nodal points. 

(v) The method is well suited for solving problems in domains with geometric 
peculiarities, such as cracks. 

At its current stage of development, the BEM exhibits the following main disad- 
vantages: 

(i) Application of the BEM requires the so-called fundamental solution. The 
method cannot be used for problems whose fundamental solution is either 
not known or cannot be determined. Such are, for example, problems de- 
scribed by differential equations with variable coefficients. The method is 
obviously not applicable to non-linear problems for which the principle of 
superposition does not hold. In this case, a BEM model produces domain in- 
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tegrals that can be computed by discretizing the domain, but this, of course, 
spoils the pure boundary character of the method. During the last years, 
intense research has been conducted in an effort to overcome the aforemen- 
tioned disadvantages. 

(ii) The numerical implementation of the BEM results in systems of linear alge- 
braic equations whose coefficient matrices are fully populated and non-sym- 
metric. In a FEM model, however, the corresponding matrices have some 
very nice properties, they are banded and symmetric. This drawback of the 
BEM is counterbalanced by the much smaller dimensions of its matrices. 
The general format of the coefficient matrices for a FEM and BEM model is 
shown graphically in Fig. 1.2. 

m 

0000  
00000  
0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

0 0 0 0 0 0  
00000  

0000  
_ 

'""'l 0 0 0 0 0 0  0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

FEM BEM 

Figure 1.2 Coefficient matrices for FEM and BEM. 

1.3 Historical development of the BEM 

Until the beginning of the eighties, the BEM was known as Boundary Integral 
Equation Method (BIEM). As a method for solving problems of mathematical 
physics has its origin in the work of (3. Green [16]. He formulated, in 1828, the in- 
tegral representation of the solution for the Dirichlet and Neumann problems of the 
Laplace equation by introducing the so-called Green's function for these problems. 
In 1872, Betti [17] presented a general method for integrating the equations of 
elasticity and deriving their solution in integral form. Basically, this may be re- 
garded as a direct extension of Green's approach to the Navier equations of elas- 
ticity. In 1885, Somigliana [18] used Betti's reciprocal theorem to derive the 
integral representation of the solution for the elasticity problem, including in its 
expression the body forces, the boundary displacements and the tractions. 

The fatherhood, however, of the Boundary Element Method could be attributed to 
Fredholm. At the beginning of the twentieth century, he was the first one to use 
singular boundary integral equations in order to find the unknown boundary quan- 
tities for problems of potential theory [19]. In fact, the method was employed as a 
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mathematical tool to determine the necessary boundary conditions for a well-posed 
problem of mathematical physics, and not as a method to solve the problem. This is 
quite reasonable, because it was, and still is, not possible to find the analytic solu- 
tion of the derived singular integral equations. In the aforementioned methods, the 
unknown boundary quantities have a direct physical or geometrical meaning and 
for this reason they are referred to as direct BEM. In addition to these methods, 
there were also other BEM formulations developed, in which the unknown bound- 
ary quantities have no direct physical or geometrical meaning, and thereafter they 
are given the name indirect BEM [20, 21, 22]. A detailed review of these methods 
may be found in [23]. Sherman [24, 25], Mikhlin [26] and Muskhelishvili [27] used 
complex functions to develop boundary integral equation methods for the solution 
of plane elasticity problems. 

Closed form solutions of integral equations were only derived for some domains 
with very simple boundary geometry. Unfortunately, the work of Fredholm pre- 
dated the computers, which could make his ideas practical For this reason, the 
Boundary Integral Equation Method was neglected until the end of the fifties. 
Then, with the advent of computers, the method came back to the spotlight as an 
appealing numerical method for solving engineering problems. Numerical methods 
were developed for the solution of boundary integral equations and difficult physi- 
cal problems of complex boundary geometry, which could not be tackled by other 
methods, were solved for the first time by the BIEM. The first works that laid the 
foundation of BEM as a computational technique appeared in the early sixties. 
Jaswon [28] and Symm [29] used Fredholm's equations to solve some two-dimen- 
sional problems of potential theory [30, 31]. The merits of BEM, which were listed 
in the previous section, attracted researchers and motivated them to further develop 
the method. Rizzo [32] and Cruse [33] applied the method to two-and three- 
dimensional elasticity problems, respectively. Rizzo and Shippy [34] extended the 
method to anisotropic elasticity, while Cruse and Rizzo [35] solved the elastody- 
namic problem. Ignaczak and Nowacki [36] expressed the integral equations of 
thermoelasticity and Mendelson [37] studied problems of elastoplastic torsion. 

All the aforementioned problems are governed by second order partial differential 
equations. Another group of problems are those described by the biharmonic equa- 
tion. In this case, the integral representation of the solution was derived from the 
Rayleigh-Green identity [38], and the approach was applied to plate bending and 
plane elasticity, with the latter being formulated in terms of Airy's stress function. 
The formulation consists of two boundary integral equations, one for each of the 
unknown boundary quantities. The first one arises from the boundary character of 
the integral representation of the field function, while the second is obtained from 
the integral representation either of the Laplacian of the field function or its deriva- 
tive along the normal to the boundary. The second approach presented by Katsi- 
kadelis et al. [39] became the prevailing one and was adopted later by Bezine [40] 
and Stern [41] to solve the plate bending problem. An extended and detailed 
presentation of the plate bending problems that have been analyzed by the BEM 
can be found in Ref. [42]. Already in the late eighties, one could find numerous 



Chapter 1 Introduction 7 

publications in the literature, where the BEM was applied to a wide variety of 
engineering problems. Among them are static and dynamic, linear or non-linear 
problems of elasticity, of plates and shells, problems of elastodynamics, wave and 
earthquake engineering, geomechanics and foundation engineering, soil-structure 
interaction, fluid-structure interaction, fluid dynamics, unilateral contact, fracture 
mechanics, electricity and electromagnetism, heat conduction, acoustics, aerody- 
namics, corrosion, optimization, sensitivity analysis, inverse problems, problems of 
system identification, etc. It could be said that today the BEM has matured and 
become a powerful method for the analysis of engineering problem~;, and an alter- 
native to the domain methods. The method has been established by the name BEM 
(Boundary Element Method), which is attributed to the approach used to solve the 
boundary integral equations (i.e., discretization of the boundary into elements). 
Software based on the BEM has been developed for computers of simple or paral- 
lel architecture, along with professional high performance packages, like BEASY 
[43]. In 1978, C. Brebbia organized the first international conference on BEM, and 
since then conferences on BEM are organized yearly by the International Society 
for Boundary Elements (ISBE) and the International Association for Boundary 
Elements (IABEM). Furthermore, all conferences on computational mechanics de- 
vote sessions to the BEM. A detailed review of this enormous work would occupy 
a lot of space in this book and, of course, it is beyond its scope. However, inter- 
ested readers are referred to literature review articles [44, 45], to the proceedings of 
the above conferences (BEM, IABEM) and to the numerous publications of the 
Computational Mechanics Publications, Southampton. 

New developments in BEM aim at overcoming any drawbacks of the method. They 
deal with complicated time-dependent problems, linear problems for which the 
fundamental solution is not known, and also non-linear problems. For all these 
types of problems the resulting integral solution involves domain integrals, which 
complicate the application of the method. The most promising techniques that suc- 
cessfully overcome most of the difficulties and at the same time preserve the purely 
boundary character of the BEM, are the Dual Reciprocity Method (DRM) [46], 
which has, however, some limitations, and the Analog Equation Method (AEM) 
[47, 48]. The latter is general and relieved of DRM's limitations. 

1.4 Structure of the book 

As it was mentioned in Section 1.1, the scope of this book is to make the BEM 
comprehensible to the engineering student. For this purpose, its application will be 
limited to the simpler but most representative problems. On these grounds, the 
book contains including the introduction, seven chapters and three appendices. 
Every chapter is followed by the pertinent bibliography and recommended refer- 
ences for further study. Several exercises have been included at the end of each 
chapter in order to help the reader practice the concepts studied in the book. 

Chapter 2 presents some preliminary mathematical concepts that are necessary for 
developing the BEM. These concepts are the divergence theorem of Gauss, 



8 BOUNDARY ELEMENTS 

Green's reciprocal identity (Green's second theorem) and the definition of the delta 
function along with its properties. 

In Chapter 3, the direct BEM is developed for some problems of potential theory, 
that is boundary value problems for the two-dimensional Laplace and Poisson 
equations. It is extefided also to the case of general second order partial differential 
equations with constant coefficients, which govern the homogeneous orthotropic, 
or generally, anisotropic bodies. 

Chapter4 describes the numerical implementation of BEM and the numerical 
solution of the singular boundary integral equations. For educational purposes, the 
solution is derived only for constant boundary elements and a computer program 
has been developed in FORTRAN language. The program is explained thoroughly 
and its structure is given in a systematic way, so that the student can become ac- 
quainted with the logic of writing BEM software. The method is also applied to 
domains containing holes and another computer program is provided for this case. 
Finally, one will find the method of subregions (subdivision of the original do- 
main) as it applies to the BEM. 

Chapter 5 is devoted to the boundary element technology. The singular integral 
equations are integrated numerically using boundary elements. The elements may 
be subparametric, isoparametric or superparametric and emphasis is put on the lin- 
ear and parabolic elements. A considerable portion of the chapter is devoted to the 
evaluation of the singular and hypersingular integrals. 

Chapter 6 presents applications of the BEM to engineering problems that can be 
reduced to boundary value problems for the Laplace or Poisson equation. In par- 
ticular, the BEM is applied to the Saint-Venant torsion problem for isotropic and 
anisotropic materials, to the bending of membranes and of simply supported plates, 
to heat conduction and to the irrotational flow of incompressible fluids. For each of 
these problems, the reader is provided with a computer program and representative 
examples. 

Chapter 7 studies the plane elasticity problem. The fundamental solution and the 
corresponding boundary integral equations are derived in a simple way so that the 
student will be able to follow all the steps and understand the subject. A computer 
program has been written also for this problem and several numerical applications 
are presented with intend to familiarize the student with the use of the program, on 
one hand, and to demonstrate the effectiveness of the method, on the other. 

Appendix A lists useful relations, which facilitate the differentiation of the kernels 
found in the integral equations. Appendix B presents the Gaussian quadrature (nu- 
merical integration) for regular and singular integrals in one and two dimensions. 
Finally, Appendix C provides answers and/or hints to selected problems from those 
found at the end of the six chapters. 
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1.5 C D - R O M  contents 

The book is accompanied by a CD-ROM containing the computer programs whose 
code is presented in the chapters of the present book. Specifically, the following 
programs can be found in the CD-ROM. 

1. LABECON.FOR, RECT-I.FOR and ELLIPSE-1.FOR. The first one solves the 
Laplace equation using constant elements, while the other two form the data 
files for rectangular and elliptic domains. 

2. LABECONMU.FOR and RECT-2.FOR. The first program solves the Laplace 
equation for domains with holes and the second one prepares the data file for 
multiply connected domains (Example 4.3). 

3. TORSCON.FOR, RECT-3.FOR and ELLIPSE-3.FOR. The first one solves the 
torsion problem and the other two create the data files for rectangular and ellip- 
tic cross-sections. 

4. FLUIDCON.FOR. It analyzes the irrotational flow of incompressible fluids. 

5. ELBECON.FOR, RECT-4.FOR and RECTEL-MU.FOR. The first one solves 
the plane elasticity problem (plane strain and plane stress). The second one con- 
structs the data file for rectangular domains, while the third one forms the data 
file for domains with multiple boundaries (Example 7.3). 
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Chapter 2 
lllll Ill I 

Preliminary 
Mathematical Concepts 

2.1 Introduction 

In this chapter, some mathematical relations are presented which are required for 
the development and understanding of the boundary element method (BEM). 
Although these relations could have been included in an appendix, they are placed 
here to show the reader their important role in the theoretical foundation and 
development of the BEM. They will be used many a time and oft in the book and 
particularly for the transformation of the differential equations, which govern the 
response of physical systems within a domain, into integral equations on the 
boundary. The understanding of these mathematical concepts will give the reader a 
feeling of confidence for their subsequent use. 

2.2 The Gauss-Green theorem 

The Gauss-Green theorem is a fundamental identity, which relates the integral of 
the derivative of a function over a domain ~ to the integral of that function on its 
the boundary F .  The domain may be two- or three-dimensional. For simplicity of 
presentation, this relationship is derived for the two-dimensional case. Consider the 
plane domain f~ bounded by the curve F .  We shall work first with the derivative 
of a function f = f ( x ,  y) with respect to x .  The integral over fl may be written as 
a double integral, for which the integration is carried out first with respect to x and 
then with respect to y. Thus, we can write 

Ox , , Ox 
j.yY2 

dy - { f (x2 ,  y) - f ( x l ,  y) } dy 
. l  

(2.1) 

where 

and x2 = x2(y) (2.2) 



14 BOUNDARY ELEMENTS 

Y2 
dy 

-+-8 82 

................ ~ ~ ~ ' ,  . . . . . . . . . . . . .  

" i! i " i ad~ 
............... ~ r  i,, 

i "- x l  dx x2 - x  

Figure 2.1 Integration over a plane domain ~2 bounded by a curve F .  

From the detail of Fig. 2.1, we have 

dy - - = c o s c ~ = n ~  =~ dy = n, ds (2.3a) 
ds 

dx 
ds 

= s i n ( ~ - - n y  ~ dx - -ny ds (2.3b) 

where n~, and ny are the components of the unit vector n ,  which is normal to the 
boundary F .  The negative sign in Eq. (2.3b) is due to the fact that the dx and the 
sin ~ have opposite signs when the angle a is measured in the counter-clockwise 
sense with respect to the positive x-direction (see detail in Fig. 2.1). 

Consequently, Eq. (2. l) becomes 

f)", { f (~ ,  y) - f(~,, y) } dy - f : f (~ ,  y)~, d~ - f ,  f(x,, y)~,. d~ (2.4) 

In the previous expression the integration on s~ is performed in the negative direc- 
tion (clockwise) when y varies from Yl to Y2. Using uniform direction for the 
integration over s, both terms in Eq. (2.4) can be combined in a single expressiofi 

f O_ff dfl - f r f n ,  ds 
Ox 

(2.5) 

Interchanging x with y in Eq. (2.5), we obtain 

f OJ" dgt - f r  fny  ds 
Oy 

(2.6) 

If 9 is another function of x and y,  then Eqs. (2.5) and (2.6) result in 
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Of d~ + f ~ f 09 d~ L L :. '" :s o-: o--: Ox 

f .  g o-~~ d~ - - f~  f o-~~ d~ + f~ ig n. d~ (2.7) 

O(fg) dl2 - f r fg ny ds f~ oy Of d~ + f~ f Og d~ 

f ~ 9 O fo_y d ~ - - f ~ f o-yO g d ~ + f r f 9 ny ds (2.8) 

Equations (2.7) and (2.8) state the integration by parts in two dimensions and are 
known as the Gauss-Green theorem. 

2.3 The divergence theorem of Gauss 

The divergence theorem results readily as an application of the Gauss-Green theo- 
rem. Consider the vector field u - u i  + v j ,  where i ,  j denote the unit vectors 
along the x and y axes and u = u(x,y), v--v(x ,y)  its components. Applying 
Eq. (2.5) for f = u and Eq. (2.6) for f = v and adding, yields 

L o___~u + O__v_v 
Ox Oy dl2 - f r  (u n~ + vnu)ds (2.9) 

If the coordinates x and y are represented by xl and x2, respectively, then the 
components of the vector field u are denoted by u~ (i = 1, 2) and those of the 
normal vector n by n~. Therefore, Eq. (2.9) can be written as 

Oul + df'l = (ul nl + u2 n2 ) ds (2.10) 
Ox~ Ox2 

or using the summation convention 

f Oui di) - f ru i  nz ds Ox~ 
(i = 1,2) (2.11) 

Equations (2.9), (2.10) and (2.11 ) can also be written using vector notation as 

~ V.  u d~ - : r u  . n (2.12) 

in which the symbolic vector V is defined as 

v _ i o + j o  o o 
Ox ~ - il --OXl -~- i2 --Ox2 (2.13) 
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and represents the differential operator that produces the gradient of  a scalar field. 

The quantity 27. u ,  i.e. the dot product of  the vectors 27 and u ,  is referred to as 
the divergence of a vector field u at a point inside the domain Q, whereas the 
quantity u .  n is referred to as theflux of the vector field at a point on the boundary 
F .  The latter dot product expresses the projection of  u in the direction of  n .  
Eq. (2.12) relates the total divergence to the total flux of  a vector field and it is 
known as the divergence theorem of Gauss. It is one of  the most important theo- 
rems of  integral calculus. 

2.4 Green's second identity 

Consider the functions u = u(x,y) and v = v(x, y) which are twice continuously 
differentiable in Q and once on F .  Applying Eq. (2.7) for 9 - v ,  f - ~  and 
Eq. (2.8) for 9 - v, f _ ~~ and adding the resulting equations, we arrive at the 
following 

f~  v l 02u 02u 
Ox----- s + - -  Oy 2 

Ou 0___2 + O___Eu O_s 
Ox Ox Oy Oy 

d~ 

+ f r v  
0 'It 0 'It 

7 t .  -[- ~ n y  
Ox Oy 

ds (2.14) 

Similarly, applying Eq. (2.7) for g - u ,  f - ~o~ and Eq. (2.8) for g - u , f _ ~~ 
and adding the resulting equations, we obtain 

L U 
Ox Ox Oy Oy 

d~ 

+ f r  u 
Ov Ov 
- -  n z  + ~ 7ty 
Ox Oy 

ds (2.15) 

Subtracting Eq. (2.15) from Eq. (2.14) yields 

(vV2u - uV2v)d~'2 - v u - -  ds (2.16) 
On On 

where V 2 is known as the Laplace operator or harmonic operator and it is defined 
as  

0 0 
V 2 - - V ' V  - i ~-fx + j ~-~y 

0 0 
" i~xx+J~yy  

_ 0 2 0 2 
Ox------ 7 + Oy------ 7 (2.17) 

while 
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0 

On 
= n . V -  ( n ~ i + n u j ) .  

0 O] 0 0 
i ~ x  + j~yy j - n~ - - - t -  n ~ - -  (2.18) 

Ox Oy 

is the operator that produces the derivative of a scalar function in the direction of 
n .  Equation (2.16) is known as Green's second identity for the harmonic operator 
or Green's reciprocal identity. 

2.5 The adjoint operator 
Consider the complete second order differential equation with variable coefficients 

L(u) = A 02u + 2B 02u + 02u Ou Ou 
Ox - - 7  OxOy C~+oy 2 D--+Ox E--+Oy Fu - 0 (2.19) 

where A,B,. . . ,F are given functions of x and y in f~. Multiplying Eq. (2.19) by 
a function v = v(x, y) and integrating over the domain, we have 

f v LOt ) df~ - 0 (2.20) 

Let us assume that v is twice continuously differentiable in f~ and once on F .  
Subsequently, integrating Eq. (2.20) by parts repeatedly until all derivatives of u 
are eliminated and incorporating Eqs. (2.7) and (2.8), we arrive at 

(2.21) 

where 

L*(v) = 02(Av) 02(t~v) O~(Cv) O(Dv) O(Ev) + 2 -~ F- Fv (2.22) 
Ox 2 OxOy Oy 2 Ox Oy 

Ou X - A v  
Ox 

OV U ~  
Ox 

+ B  Ou Ov 
Oy Oy 

+ D OA OB I uv (2.23) 
Ox Oy 

Y = B  Ou Ov) v ~ - u - -  + C  
Ox Ox 

Ou Ov 
Oy Oy 

+ E uv (2.24) 
Ox Oy 

The differential operator L*( ) defined in Eq. (2.22) is referred to as the adjoint 
operator of L ( ) .  Equation (2.21) is the general form of the Green's second identity 
(2.16), which results readily as a special case of Eq. (2.21) for A = C = 1 and 
B - D = E = 0.  The case F ~ 0 does not affect Eq. (2.16) as it is equivalent to 
adding and subtracting the term Fur in the integral of the left hand side of this 
equation. When A, B, C are constants and D - E = 0,  Eq. (2.22) becomes 
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L* (v) - A 02----~v + 2B ~ 02v + C ~ 02v + Fv (2.25) 
Ox 2 Oy 2 Oy 2 

Namely, the operator L*( ) is identical to L( )and in this case L( ) is called self- 
adjoint. 

The character of the solution of Eq. (2.19), as well as the type of the problem to be 
solved, depends on the quantity A = B 2 - AC.  We distinguish three types of 
equations: 

(a) Elliptic type, for A < 0 

(b) Parabolic type, for A -- 0 

(c) Hyperbolic type, for A > 0 

2.6 The Dirac delta function 

In problems of solid mechanics, we often come across concentrated loads, that is 
actions that are applied to a very small region, theoretically at a point, of the space 
or of the time. 

Figure 2.2 Circular disc loaded by 
vertical concentrated unit load F .  

Figure 2.3 Force distribution on the 
boundary of the body. 

For example, consider the plane elastic body A1 having constant thickness h and 
occupying the half-plane - o c  < x < +c,~, y > 0 (Fig. 2.2). A circular disc A2 of 
the same thickness h and radius R is in contact with the semi-infinite body at 
point (x, y) = (0, 0) of its free boundary. The circular disc is loaded by a vertical 
concentrated unit load F as shown in Fig. 2.2. Because of the deformation of the 
elastic bodies the contact does not take place at a point, but it is extended over a 
small region. The function f ( z )  represents the distribution per unit length of the 
force applied on the boundary of the body A1. This function, which most probably 
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has the shape shown in Fig. 2.3, is not a priori known. However, we know that it is 
sufficiently concentrated and 

f ~ f ( x ) d x  = 1 (2.26) 
CY,9 

which expresses that the total force applied on the body A1 is equal to unity. If we 
skip the problem of determining analytically the function f ,  we may assume a pri- 
ori a prescribed shape for this function as 

f (z) = 

1 
k / 2 ,  ixl  < - 

k 
1 

O, Ixl > -- 
- k  

(2.27) 

or  

k fk(x) - (2.28) 
7r (1 + k 2 x 2) 

where k is a positive number. 

Figures 2.4a and 2.4b show that both functions fk defined in Eqs. (2.27) and 
(2.28), respectively, become sufficiently concentrated for large values of k. More- 
over, they satisfy Eq. (2.26), which means that they are statically equivalent to f .  

k 

�9 = - I f~(x) - k~x~ 
~ ( 1 +  ) 

x 

(a) (b) 

Figure 2.4 Functions fk sufficiently concentrated for large values of k. 

The distribution of f (x )  becomes more "concentrated" as the bodies become less 
deformable. This is expressed by increasing the values of k in Eqs. (2.27) and 
(2.28). The limiting case where the bodies are rigid is expressed by k ~ cx~. This 
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produces a fictitious distribution of the unit force per unit length, which is denoted 
by 5(x) and is defined as 

5(x) - kg/m fk(x) (2.29) 

where fk(x) is the function defined in Eq. (2.27) or (2.28). The function 5(x) is 
known as delta function or Dirac delta function. 

In mathematics, the delta function is treated in the theory of generalized functions. 
We give below the definition of the delta function as a generalized function of one 
and two variables, and we mention some of its properties used in developing the 
BEM. 

The one-dimensional delta function is defined by the relation 

f + ~  ~(~)h(~) d~ - h(o) (2.30) 

for a point source applied at the position x = 0 or by the relation 

f ~  ~(x - ~ , , )  h(:,:) ,~ - h(:,:,,) r ' , ,u 
(2.31) 

for a point source applied at x = xo. The function h(x) is continuous in a finite 
interval containing the source point x = 0 or x = x,,, and has zero value outside 
the interval. The one-dimensional delta function can also be described by the rela- 
tions 

t O, x ~ 0 ~(~:) - 
ox~, x - 0 

(2.32a) 

(2.32b) 

where c is a positive number. According to this definition, the function 6(x) has 
zero value everywhere except at point x - 0,  where it becomes infinite, and satis- 
fies Eq. (2.32b). 

Equation (2.30) may be obtained from Eq. (2.32b) by applying the mean value 
theorem of integral calculus. Referring to Fig. 2.4a and choosing c - - l / k ,  we 
obtain 

F ~--,0 - c  c- - ,0  

= e ~  [ h ( x * ) ]  - h ( o )  
c--*O 

1 h(:,:*)U 2c 

The Dirac delta function 6(Q - Qo) in two dimensions is defined as 
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f ~  5(Q - Qo) h(Q) df2Q = h(Qo), Q(x, y), Qo(xo, yo ) e gt (2.33) 

for an arbitrary function h(Q), which is continuous in the domain f2 containing 
the point Qo(xo, yo). The two-dimensional delta function may also be described by 

0, Q ~ Q o  
5 ( Q - Q o ) -  oc, Q - Q o  (2.34a) 

Jn 5(Q - Qo) d ~2Q -- J~. 5(Q - Qo) d l-~Q -- 1, 

Qo(xo, yo) c g~* c_ (2.34b) 

In accordance to the one-dimensional delta function 5 ( x -  Xo), the two-dimen- 
sional 5 ( Q -  Qo) may be defined as the limit of a set of functions. More specifi- 
cally, 

5(Q - Q o )  - g i m  f k ( r )  Q(x, y), Qo(xo, yo ) c (2.35) 

where 

- ~/(~ - ~o)~ + ( y -  Xo)~ 

For example the limit of the function 

f ~ ( , + )  - 
k 
1 

0, r > -  
k 

(2.36a) 

or 

kc-kr2 
fk(r) - (2.36b) 

for k ~ c~ is a two-dimensional delta function. We can also write 5 ( Q -  Qo) as 
the product of two one-dimensional delta functions as follows 

5(Q - Qo ) - 5(x - Xo ) 5(y - yo ) (2.37) 

Consider now the transformation 

I y - v ( ~ , , 7 )  

(2.38) 
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where u and v are assumed to be single-valued continuous differentiable func- 
tions of their arguments. The transformation of the function ~5(Q- Qo) from the 
Cartesian coordinates x and y to the curvilinear coordinates ~ and 77 can be per- 
formed in the following way. 

It is supposed that under this transformation the point x = Xo, y = yo is mapped 
onto the point ~ = ~Co, r / -  r/o. By changing coordinates, the integral of Eq. (2.33) 

.-,~ 6 ( x -  Xo) 6 ( y -  yo) h(x ,y)  d x d y  - h( xo , yo ) 

becomes 

~ 6[u(~,v) - Xo] 6[v(~, r]) - yo] h(u,v)IJI d~drl - h(xo,yo) (2.39) 

where 

J =  

Ou Ov 
5 g Y  
Ou Ov 

is the Jacobian of the transformation. 

Equation (2.39) states that the symbolic function 

6[ u(~, 7j) - :r,, } ,5[ v(~, rl) - y,, ] I JI 

assigns the value of the function h,(x, y) at the point where u = x,,, v = y,,, that is 
at the point where ~ = ~o, 7 /=  '~l,,. Consequently, we may write 

~[~L(~, 7/) - w,, ] / 5 [ v ( ~ ,  , / )  - y,, ] l J I  - ~ ( ~  - ~ , , )  a(Tj - ~/,,) 

which may also be set in the form 

I,]1 
(2.40) 

provided that l J[ ~ O, a condition which implies that the transformation (2.38) is 
non-singular (invertible). 

We close this section by stating a property of the deri,~atives of the delta function. 

(i) For the m Ch order derivative of the one-dimensional delta function the follow- 
ing equation is valid 

f b h ( x )  d m 6 ( x -  .:Co) dx - ( -1)  "~ d"~h(x~ 
3a dx ''~ dx TM 

(a < Xo < b) (2.41) 
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(ii) For the (m + n)th order derivative of the two-dimensional delta function, the 
following equation is valid 

y~ h(Q) om+'~. OX 'n 5(QOy n- Qo) d~Q -- (-  1) m+" om+"ox m h(QOoy '~ ) (2.42) 

where Qo(xo, yo ), Q(x, y) c f~ . 

2.7 References 

This chapter has been designed to give a brief elementary description of the basic 
mathematical tools that will be employed throughout this book in developing the 
BEM formulations. The reader may look for more details about the Gauss-Green 
theorem and the Gauss divergence theorem in most books on calculus as well as in 
many books of engineering mathematics or mathematical physics, such as Smir- 
now [1], Hildebrand [2], Kreyszig [3], Sommerfeld [4]. For a detailed discussion 
about the Dirac delta function, we refer to the book of Greenberg [5] or to the more 
advanced books of Roach [6] and Duff and Naylor [7]. 
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Problems 

2.1. Convert the domain integral 

f~f d~ 
to boundary line integral on F ,  when the function f is 
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(i)  f - x ( i i )  f - -  y 

(iii) f - xy  ( iv )  f - x 2 

(v) f - y 2  (vi) f : x  2 + y 2  

(vii) f - cos x 

2.2. Derive the operator V 2 in polar coordinates ( r ,  0)  and convert the follow- 
ing domain integral to a boundary line integral on F 

f ~ gnr d~, r -  x/xi ~ - y2 

2.3. Evaluate the integrals 

fa (i)  6 ( X - X o )  d x ,  a < xo < b 

(ii) 6(kx) f (x)  dx, a < O < b 

2 (iii) ~(-x)  dx, a < O < b 

2 
2.4. Show that 

(i) 6 ( - x )  = 6 ( x ) ,  a < O < b 

(ii) lS(ax + by) 6(cx + dy) = 
l a d - b c [  

2.5. Transform the delta function 6 ( P - P o )  for the points P ( x , y ) a n d  Po(xo,yo) 
into polar coordinates r and 0. 

2.6. Derive Eq. (2.21) along with Eqs. (2.22) through (2.24). 

2.7. Show that f X72u d~ - f r OU ds . 
On 

2.8. Given L(u) - 27~u + a. V u + cu,  where a - axi + ayj is an arbitrary vec- 
tor, show that 

(i) L ' (u )=  V 2 u -  V - ( a u )  + cu,  

(ii) vL(u) - uL* (v) = xT. (v~ 7u - u~Tv + auv) ,  and 

(iii) derive Green's identity for the operator L(u). 



Chapter 3 

The BEM for Potential 
Problems in Two Dimensions 

3.1 Introduction 

In this chapter the boundary element method is developed for the solution of engi- 
neering problems described by the potential equation 

V'2~t - f (z ,  9) (z, Y E ~2) (3.1) 

This is the governing equation of potential theory, which for f =  0 is known as 
the Laplace equation, whereas for f ~: 0 is known as the Poisson equation. Its so- 
lution u = ~,(z, 9) represents the potential produced at a point (z, :q) in the domain 
f~ due to a source f(.~',~l) distributed over ~ .  The potential equation (3.1) de- 
scribes the response of many physical systems. It appears in steady state flow 
problems, such as fluid flow, thermal flow, electricity flow, as well as in torsion of 
prismatic bars, bending of membranes, etc. According to the definitions given in 
Section 2.5, Eq. (3.1) is of elliptic type, since ,5 < 0. Its solution is sought in a 
closed plane domain ~~ having a boundary F on which either the function u or its 
derivative O'u/O'H, in the direction normal to F is prescribed. That is, the solution 
must satisfy the boundary conditions of the problem on the boundary F .  The 
boundary value problems for the potential equation can be classified as follows: 

(i) Dirichlet problem 

V 2 u -  f in ~ (3.2a) 

u - ~ -  on E (3.2b) 

(ii) Neumann problem 

V 2 u -  f in f~ (3.3a) 
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OU _ 
= Un 

On 
on r (3.3b) 

(iii) Mixed problem 

V 2 u - f  in fi (3.4a) 

u - g  on F~ (3.4b) 

OU 
= u--,~ o n  1-'2 

On 
(3.4c) 

where F1 U F 2  = 1-" and lPl 71 F2 - {~}. 

(iv) Robin problem 

V 2 u - f  in f~ (3.5a) 

O u - o  on F (3.5b) u + k(s) On 

The quantities denoted by ~,  ~,~ and k(s) are known functions defined on the 
boundary. 

All four problems can be expressed through a single formulation as 

V 2 u -  f in ~ (3.6a) 

c~ u + /3 0 u 07---~- "7 on 1-' (3.6b) 

where a = a(s), /3 = fl(s) and 3' = 3'(s) are known functions defined on the 
boundary F .  Apparently, each of the foregoing four boundary value problems 
(Eqs. 3.2-3.5) may be derived from Eq. (3.6) by appropriately specifying the func- 
tions c~, /3 and 7.  

Two boundary element methods have been developed for solving the previously 
stated four boundary value problems: the direct boundary element method and the 
indirect boundary element method. In this book, we present only the direct bound- 
ary element method. 

3.2 Fundamental  solution 

Let us consider a point source placed at point P(x, y) of the xy-plane. Its density 
at Q(~, 71) may be expressed mathematically by the delta function as 

f ( Q ) -  6(Q- P) (3.7) 
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and the potential v - v(Q, P)  produced at point Q satisfies the equation 

V2v - 6 ( Q -  P)  (3.8) 

A singular particular solution of Eq. (3.8) is called the fundamental  solution of the 
potential equation (3.1). It is determined by writing Eq. (3.8) in polar coordinates 
with origin at the point source P .  Since this solution is axisymmetric with respect 
to the source, it is independent of the polar angle 0,  and thus Eq. (3.8) becomes 

l d ( r  dv 
r dr ~ r  

- 6 ( Q -  P) (3.9) 

where 

r - I Q -  P l -  x/(5 - x) 2 + ( r / -  y)2 (3.10) 

The right-hand side of Eq. (3.8) vanishes at all points of the plane, except at the 
origin r - 0, where it has an infinite value. Apart from point r - 0, Eq. (3.9) is 
written as 

l d  

r dr 

d u  

dr 
- 0  

which gives after integrating twice 

v -  A g n r  + B 

where A and /3 are arbitrary constants. Since we look for a particular solution, we 
may set B - 0. The other constant, A, may be determined in the following way. 

n 

! 
I . . . . . . . . . . . . . . .  

I ! 
, P ( x , y )  , 
I I 

% g 
% / 

, , 

" ," F % s 

Figure 3.1 Circular domain f~ of radius p 
with a source P at its center. 
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Due to the axisymmetric nature of the problem (see Fig. 3.1), it is 

O v  _ O v  = A L 

O n  - O r  r 
and ds = rdO (3.11) 

Application of Green's identity (2.16) for u = 1 and v = A g n r ,  yields 

- f n  V2v dft = - f r  O--v-v ds 
On 

where f~ is the circle with center at point P and radius p .  Using then Eqs. (3.8) 
and (3.11), and noting that for points on the boundary 1-' it is r = p ,  the above 
relation is written as 

- - p d O  
P 

or by applying Eq. (2.34b), it takes the form 

1 = 2 r r A  

from which we obtain 

1 
A = (3.12) 

2rr 

Hence, the fundamental solution becomes 

1 
v - ~  gnr (3.13) 

2rr 

From Eq. (3.10) it is evident that the fundamental solution does not change value, 
when points P and Q interchange their role. This means that v is symmetric with 
respect to these points, namely 

v(Q,P)  = v(P,Q)  (3.14) 

The fundamental solution (3.13) is also known in the literature as the f ree  space 
Green's function. 

3.3 The direct BEM for the Laplace equation 

In this section, we derive the solution of the Laplace equation 

V 2 u = 0  in f~ (3.15) 

with mixed boundary conditions (see Fig. 3.2) 
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u - ~- o n  1--al (3.16a) 

C~U _ 
= u ~  on F2 (3.16b) 

On 

where F~ U F2 = F. In the literature, condition (3.16a) is referred to as essential or 
kinematic, while (3.16b) as natural. Instead of the boundary conditions (3.16), we 
can use the general condition (3.6b), but at the present time, we avoid it for the 
sake of simplicity. 

Applying Green's identity (2.16), for the functions u and v that satisfy Eqs. (3.15) 
and (3.8), respectively, and assuming that the source lies at point P, we obtain 

- f u(Q) 6(Q- P)dQQ - f r 
v(q, P) Ou(q) u(q) Ov(q, P) 

OQnq Onq 
dsq (3.17) 

where P ,Q E f2 and q E F. 

In the previous equations and hereafter, points inside the domain f2 are denoted by 
upper case letters, e.g. P ,  Q, while points on the boundary F are denoted by 
lower case letters, e.g. p ,  q. The subscripts of the differentials, e.g. df2Q, dsq, 
and the derivatives, e.g. O( )/Onq, denote the points that vary during integration or 
differentiation, respectively. 

Figure 3.2 Domain f2 with mixed boundary conditions. 

By virtue of Eqs. (2.33) and (3.14), Eq. (3.17) is written as 

- - 
v(P, q)Ou(q) _ u(q) Ov(P, q) 

Onq Onq 
dsq (3.18) 

The functions v and Ov/On in the foregoing equation are both known quantities. 
These are the fundamental solution of the Laplace equation and its normal deriva- 
tive at point q of the boundary, which are given as 
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1 v -- ~ gnr 
2~ 

(3.19) 

Ov 1 cosr  

On 27r r 
(3.20) 

where r = [q - PI and r - angle(r,n) (see Appendix A). 

The expression (3.18) is the solution of the differential equation (3.15) at any point 
P inside the domain ~ (not on the boundary F ) in terms of the boundary values 
of u and its normal derivative Ou/On.  The relation (3.18) is called the integral 
representation o f  the solution for the Laplace equation. It is apparent from the 
boundary conditions (3.16a) and (3.16b), that only one of the quantities u or 
Ou/On is prescribed at a point q(~, r/) on the boundary. Consequently, it is not yet 
possible to determine the solution from the integral representation (3.18). For this 
purpose, we are going to evaluate the boundary quantity which is not prescribed by 
the boundary conditions (either u or Ou/On ), by deriving the integral representa- 
tion of u for points P = p lying on the boundary F .  

Figure 3.3 Geometric definitions related to a comer point P 
of a non-smooth boundary. 

We study the general case where the boundary is not smooth and P is a comer 
point (see Fig. 3.3). We consider the domain ~t* which results from ~t after sub- 
tracting a small circular section with center P ,  radius c and confined by the arcs 
PA and P B .  The circular arc A B  is denoted by F~ and the sum of the arcs A P  
and PB by g. The outward normal to F~ coincides with the radius e and is di- 
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rected towards the center P .  The angle between the tangents of the boundary at 
point P is denoted by c~. Obviously, it is 

e iN(0  - ) - 

fire F~ - 0 
~---*0 

( r -  e ) -  r 

Next we apply Green's identity (2.16) in the domain i2" for the functions u and v 
satisfying Eqs. (3.15) and (3.8), respectively. Since point P lies outside the do- 
main ~*,  where it is ~i(Q- P) - 0,  it follows that 

fn .  u f(Q - P)dfZ - 0 

and consequently Green's identity gives 

f r ( Ou Ov O - -  V u - -  
-e On Ou d~' + fr~ 

Ou Ov) u - -  ds (3.21) 
Or~ On 

We will examine next the behavior of the integrals in the above equation when 
c ---, 0. Apparently, the first integral becomes 

OqU Ov 
' 0 - -  - -  U - -  

07~ On 
Ou Ov) v - - -  u - -  ds (3.22) 
Ou On 

while, the second one is written as (see Appendix A) 

fir ( O u  O v ) f r  1 0 u  f r  1 cos~5 v - - - u - -  ds - gnr d s -  - -  u ds 
On On ~ 27r On ~ 27r r 

= 11 + I2 (3.23) 

For the circular arc F~, it is 7" - c and 4) - rr. Moreover, ds - c ( -dO) ,  because 
the angle 0 is positive in the counter-clockwise sense, which is opposite to that of 
increasing s. Therefore, the first of the resulting two integrals in Eq. (3.23), takes 
the form 

fo I1 - 1 0 u  g n r d s -  1 " ~ ~  e gne d(-O) (3.24) 
27r On 27r On 

According to the mean value theorem of integral calculus, the value of an integral 
is equal to the value of its integrand at some point O within the integration interval 
multiplied by the length of that interval. Hence, 
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1 ou] e g ne(O~ - 02 ) 

When e ~ 0, the point O of the arc approaches point P .  Of course, in this case 
the derivative [Ou/On ]p, though not defined, it is bounded. Nevertheless, it is 

gim (e gne) -- 0 
e---*O 

which implies that 

gim I1 = 0 (3.25) 
c--+0 

In a similar way, the second integral in the right-hand side of Eq. (3.23) may be 
written as 

12 f r  1 c~162  fo  ~ 1 - 1  - - ~ u . . . .  ds - - ~ u ~ c  d ( - O )  

27r r , 27r c 

or by applying the mean value theorem 

12 - 1 01 - 02 
- -  _ _  ~ U 0 (02 - -  0 1 )  - -  

27r 27r 
UO 

and finally 

g im  1,2 - C~-Z- u( P ) 
~-+o 27r 

(3.26) 

By virtue of Eqs. (3.25) and (3.26), Eq. (3.23) yields 

c ---*0 e 

Ou Ov 
On On 

d s -  o~ u (P)  (3.27) 
27r 

Incorporating now the findings of Eqs. (3.22) and (3.27) into Eq. (3.21), the latter 
gives for e ~ 0 

" u(p) - - f  27r 

Ou(q) u(q) Ov(p, q) 
v( p, q) o o nq dsq (3.28) 

The last expression is the integral representation of the solution for the Laplace 
equation (3.15) at points p C F ,  where the boundary is not smooth. For points p,  
where the boundary is smooth, it is a = 7r and thus, Eq. (3.28) becomes 

2 
v(p, q)Ou(q) _ u(q) Ov(p, q.! 

Onq Onq 
dsq (3.29) 

A comparison between Eqs. (3.18) and (3.28) reveals that the function u is discon- 
tinuous when the point P E f2 approaches point p E F .  It exhibits a jump equal to 
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(1 - a/2rr)  for comer points (Eq. 3.28), or 1/2 for points on smooth parts of the 
boundary r' (Eq. 3.29). When the point P is located outside the domain f2, 
Green's identity (2.16) gives 

o--fr v(P, q)Ou(q)_ u(q) Ov(P, q) 
Onq Onq 

dsq (3.30) 

Equations (3.18), (3.29) and (3.30) can be combined in a single general equation as 

c ( P )  u ( P )  - - f r  
v(P, q) Ou(q) u(q) Ov(P, q) 

(Onq Oqnq 
dsq (3.31 ) 

where c(P) is a coefficient which depends on the position of point P and is de- 
fined as 

1 for P inside f~ 

c ( P ) -  1_ for P -  p on the boundary F 
2 

0 for P outside $'2 

Equation (3.29) constitutes a compatibility relation between the boundary values of 
u and O u / O n ,  meaning that only one of the quantities u and Ou/0n  can be pre- 
scribed at each point of the boundary. At the same time, Eq. (3.29) can be viewed 
as an integral equation on the boundary 1-', that is a b o u n d a r y  i n t e g r a l  e q u a t i o n ,  
with unknown the quantity which is not prescribed by the boundary condition. 

In the sequel, we assume a smooth boundary F .  Thus, for the Dirichlet problem 
(u = ~ on 1-' ), Eq. (3.29) is written as 

1  (0u ov) 
- ~ = - v ~ ds  (3.32a) 
2 " On On 

in which the only unknown is the function Ou/On on F .  For the Neumann prob- 
lem (Ou/On - ~,~ ), Eq. (3.29) becomes 

1 
--U -- - - f F  2 

VUn -- U - -  
OV 
O n  

ds  (3.32b) 

with only unknown the function u on F .  For problems with mixed boundary con- 
ditions, Eq. (3.29) is treated as two separate equations (see Eqs. 3.16), namely 

- ~ - - v ~ ds  on F1 (3.33a) 
2 O n  O n  

1 
--U -- - - f F  2 

V U n  -- U - -  
OV 
O n  

ds  on ['2 (3.33b) 
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3.4 The direct BEM for the Poisson equation 

In this case, we seek the solution of the boundary value problem which is governed 
by the Poisson equation 

V 2 u -  f in f2 (3.34) 

and has mixed boundary conditions 

u -  ~ on I'l (3.35a) 

OqU _ 
= un on ['2 (3.35b) 

O n  

The solution can be obtained in two different ways, which are presented in the fol- 
lowing sections. 

3.4.1 Application of Green's identity 

The integral representation of the solution is obtained by applying Green's identity 
(2.16) for the functions u and v that satisfy Eqs. (3.34) and (3.8), respectively, 

f f(ouov 5 ( P )  u - v f d r 2  - v u ~  
2 " O n  O 'n  

ds (3.36) 

The corresponding boundary integral equation for smooth boundary is 

- u - v f d~2 - v ~  - u ~  d s  (3.37) 
2 ~ " On On 

3.4.2 Transformation of the Poisson equation to the Laplace equation 

The solution of Eq. (3.34) can be obtained as a sum of two solutions 

u - u0 + ul (3.38) 

where u0 is the solution of the homogeneous equation (Laplace equation) with 
boundary conditions u0 - ~ - u: on F1 and O u o / O n  - ~,~ - O u l / O n  on F2, and 
Ux is a particular solution of the non-homogeneous equation. 

(i) P a r t i c u l a r  s o l u t i o n  u l  

The particular solution of the non-homogeneous equation is any function u~ that 
satisfies only the governing equation 

V2ul - f (3.39) 

independently of boundary conditions. We will show next that 
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ul -- f ~  v f df~ (3.40) 

where v is the fundamental solution. Using the definition (2.33) of the Dirac delta 
function, Eq. (3.39) becomes 

V 2 u l ( p ) -  f ( P )  

= f _  5 ( Q -  P ) f ( Q )  d~Q ,.tit 

and incorporating Eq. (3.8), 

- ~72 

or 

~7 2 [U l (p)  -- f ~  v(Q, P)f(Q)d~-~Q ] -  O 

which is obviously satisfied by the particular solution 

u~(P) - f v ( Q , P ) f ( Q )  d~Q 

It should be noted that the differentiations indicated by the V 2 operator are per- 
formed with respect to the coordinates of point P .  Moreover, v is continuous with 
respect to this point. Based on these, the V 2 operator was moved outside the inte- 
gral in the above equations. 

Another method to establish a particular solution is by transforming Eq. (3.39) into 
the complex domain. The transformation is defined as 

z - z + iy ,  -Z - x -  iy (i - ,J-Z-f) (3.41a) 

and its inverse is 

z + 2  z - ~  
x -- ~ ,  y -- (3.41b) 

2 2i 

We can readily show that Eq. (3.39) is transformed to 

4 02ul = f(z,T) (3.42) 
Oz O-Z 

which, after two successive integrations, yields the particular solution ul(z,T). It is 
worth mentioning that any arbitrary integration functions can be omitted, because 
we look only for a particular solution. Subsequently, the transformation (3.41a) 
produces the particular solution ul(x, y) in the physical space. 
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Example 3.1 

Determine a particular solution ul(x, y) of the Poisson equation (3.34) when 

f = x 2 + y2 (a) 

Applying the transformation (3.4 lb) to the above equation (a), gives the function 
f in the complex domain, 

f -- z g  (b) 

Equation (3.42) may then be written as 

02Ul 1 _ 
= - z z ( c )  

Oz O-Z 4 

which, after successive integrations, yields 

1 292 (d) 
u 1 - -  - -  Z 

16 

Substituting Eq. (3.41b) in the above equation, we find the particular solution in the 
physical domain 

l ( x e  )2 u~ - ~ + y2 (e) 

(ii) Homogeneous solution uo 

Once the particular solution ul has been established, the solution u0 of the homo- 
geneous equation will be obtained from the boundary value problem 

V2uo - 0 in Q (3.43) 

Uo - ~ -  ul o n  r I (3.44a) 

O u { }  O u  1 = u-,, on F2 (3.44b) 
On On 

This problem can be solved using the procedure presented in Section 3.3. 

3.5 Transformation of the domain integrals 
to boundary integrals 

In the process of solving the Poisson equation by BEM, domain integrals appear in 
the integral representation of the solution (3.36). These integrals are of the form 
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:~ v f dr2 (3.45) 

Although the integrand vf is known, the fact that domain integrals need to be 
evaluated spoils the pure boundary character of the method, thus weakening the 
advantages of  BEM over domain methods. However, it is possible to overcome this 
drawback by converting the domain integral (3.45) to a boundary line integral on 
F ,  i.e., the boundary of the domain f~. Next, two different approaches are pre- 
sented for the conversion of integral (3.45). 

(i) The function f is polynomial of x and y. 

Let us assume that the function f is a first degree polynomial with respect to z 
and y,  

f -- C~o + Ogl 3? -~- 0/2 y (3.46) 

where c~0, c~1 and c~2 are known constants. This function, apparently, satisfies the 
Laplace equation, 

~72f = 0 (3.47) 

As it will be shown later, we may determine a function U which satisfies the Pois- 
son equation 

V2U = v (3.48) 

and apply Green's identity (2.16) for the functions f and U,  

L(::'"-":':)'"- :,(: 0 U _ U Of ] ds 
On On / 

By virtue of Eqs. (3.47) and (3.48), the above equation yields 

f vfd~- fv fOU - U  Of 
On On 

ds (3.49) 

If the function f is defined in a subdomain f~* C i2 with boundary F* (see 
Fig. 3.4), then Eq. (3.49) becomes 

~ vf d ~ -  ~ .  vf d ~ -  fv" f 0 U _ U Of )ds (3.50) 
On On 

The function U = U(r) is established as a particular solution of Eq. (3.48). For 
this purpose, we write the Laplace operator in polar coordinates, 

1 d 
r dr 

dU r-~r 2zr 
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Figure 3.4 Subdomain f2* C f2 with boundary F*. 

Integrating twice the above equation, we find the particular solution 

U - 1__ r 2 (gnr - 1) (3.51) 
87r 

(ii) The function f is arbitrary. 

In this case f is an arbitrary function defined in ~2' C f~. We first establish an- 
other function F which satisfies the following Poisson equation 

V2F = f (3.52) 

This function F is determined as a particular solution of Eq. (3.52) using the pro- 
cedure presented in Section 3.4.2. The Green identity (2.16) is then applied for the 
functions v and F in the domain f~', 

~ "  ( v V 2 F -  F V 2 v ) d t ) -  f r '  OF Ov v . . . .  F 
On On 

ds 

which becomes 

fn.  v f  dC~ - f w  F 8(Q-  P)df~Q + fr" (v OF_  F OV)ds 
On On 

(3.53) 

We distinguish two cases: 

(a) f~* -- f~. The point P is always inside f~ and Eq. (3.53) yields 

f vfdf~ - F + fv  
OF Ov v - F  
On On 

ds (3.54) 
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(b) f~* C f~. The point P may be inside ~*,  on F*, or outside f~*. In this case 
Eq. (3.53) gives 

ov v f  d~ - e(P) F + v - F 
" " On On 

ds (3.55) 

where e(P)  - 1, 1/2, 0 depending on whether the point P is inside ~*,  on F* 
or outside f~*, respectively. 

3.6 The BEM for potential problems in anisotropic bodies 

In this section, we develop the BEM solution for the following boundary value 
problem 

k~x 02u + 2 kxu 02u 02u ~ + k y y ~ = f ( x , y )  in f2 (3.56a) 
Ox 2 Oz Oy ' Oy2 

u -  ~ on F1 (3.56b) 

2 7 u . m  - ~-,, on F2 (3.56c) 

where 

m --(k:,:,~ n~: + k~v ny) i + (/,:~::,j n~ + k:v.,j n:,j) j 

is a vector in the direction of the connormal to the boundary and kx~, k~y, kyy are 
constants satisfying the ellipticity condition k~2v- k~kyy < 0. Obviously, when 
kxx = kyy = 1 and k~:,j = 0,  it is m = n and the boundary value problem (3.56) 
reduces to the mixed boundary value problem for the Poisson equation described 
by Eqs. (3.34) and (3.35). Equation (3.56a) describes potential problems in anisot- 
ropic bodies (see for example Section 6.5). 

3.6.1 Integral representation of the solution 

Green's identity for the differential operator of Eq. (3.56a) can be obtained from 
Eq.(2.21) by setting A - k x x ,  B - k x u ,  C - k y y  and D - E - F - 0 .  Thus, 
one readily arrives at the following equation 

(3.57) 

where 

0 2 
L( ) -  k = ~ +  2 k ~ y ~  

Ox 2 
02 02 

+ kyy 2 (3.58) 
OxOy Oy 

The boundary condition (3.56c) may also be written, after rearranging its terms, as 
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V u . m  = q . n  = qn (3.59) 

where 

q - qx i + q~ j - kXX Ou + k~ Ou 
Ox 

Ou Ou} i +  j (3.60) 

is a vector representing the flux of u ,  which is the flow of the potential u through 
the boundary F per unit length of the boundary, and qn its component (projection) 
in the direction of the normal to the boundary. 

The resulting integral representation of the solution is obtained as 

u(P)- F vf df~- f (vVu.m-uVv.m]ds, P CO (3.61) 
J[ JF\ / 

where v is the fundamental solution of Eq. (3.56a), namely, a singular particular 
solution of the equation 

L(v) = ~5(0- P) (3.62) 

3.6.2 Fundamental  solution 

The fundamental solution of Eq. (3.56a) is established by transforming Eq. (3.62) 
in its canonical form. For this purpose we consider the transformation 

x - - y - a x  } 

- -bz  
(3.63a) 

and its inverse 

X = 

y - - - x  

Y b 
a _ 

y 
b 

(3.63b) 

where 

k~ JIDI a -- and b -  (3.64) 
kxx k~ 

IDI  = 

k xx k z 9 

k~j kyy - kxx kyu - kx~ (3.65) 

The derivatives involved in the operator (3.58) become under the transformation 
(3.63a) 
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Ov { Ov Ov I 
-j~x - - a a ~  + b o y  

Ov Ov 

02V _ _  02v = a 2 02v + 2ab 
Ox 2 O~ 2 020~ 

+ b 2 02v 
Oy 2 

{ 2v 2v I = -  a - - + b  
OxOy 0~ 2 O~Oy 

02V 02V 
Oy 2 0~ 2 

and, finally, the operator L(v) takes the following concise form 

L ( v ) -  'D' [ O2v -+ - 02v } (3.66) 

The function 5 ( Q -  P) is transformed into the ~9-plane using Eq. (2.40), 

~ ( Q - P ) -  
I J I  

where the coordinates of the points are Q ((, 7l), P (x, y), Q (~-, if), P (~, ~) and 
the Jacobian of the transformation (3.63a) becomes 

I J I  - 

Ox Oy 
O~ O~ 

Ox Oy 
o ~  o ~  

1 

a 

b 

or  

[ J I  - 
kXX 

,/IDI (3.67) 

Consequently, the Dirac function is being transformed as 

6(Q- P)-  41DI ~(0- P) 
~xx (3.68) 

Incorporating Eqs. (3.66) and (3.68) into Eq. (3.62), the latter becomes 
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V 2 v _  1 5 ( 0 -  P) (3.69) 

where the Laplace operator is expressed in terms of the ~ and ~- coordinates. A 
comparison between Eqs. (3.8) and (3.69) reveals that, according to Eq. (3.13), the 
fundamental solution of Eq. (3.69) in the (~-, ~-) coordinate system is 

1 v = gnr (3.70) 
2~41DI 

where 

or back in the (x, y) system 

r -  ~/(a 2 + b 2 ) ( ~ - x ) 2 - 2 a ( ~ - x ) ( , 1 - y ) + ( ~ 7 - y )  2 

which by virtue of Eq. (3.64) becomes 

x/ k~j~j ( ~ - x )  2 - 2 k~:j ( ~ - x ) ( 7! - y ) +  k:~x ( , ! -  y )2 
7" = ~ (3.71) 

The fundamental solution is not altered, if a constant is added to it. Thus, we can 
write 

1 1 
v = g n r +  Cn 

o r  

1 
v = gnr (3.72) 

27r,,/I DI 

where now 

r - -  I k u v ( ~ -  x)2 - 2 k ~ ( ~ -  x ) ( T l -  y ) +  k ~ ( ~ l -  (3.73) 

It should be noted that the quantities k,~y/IDI, k~/IDI and k~/IDI are the 
elements of the matrix D -1 [17]. If the material is orthotropic, the constants 
become kxy = 0,  I D I -  k~ ku:j, and Eq. (3.73) is reduced to 

r I (~-~)~ (n-Y)~ 
k~ kyy 

(3.74) 
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For the established fundamental solution (3.72), the term V v. m appearing in the 
integral representation (3.61), becomes 

1 ~ 7 r . m  
V v . i n  = (3.75) 

2~41DI r 

where 

Or Or 
V r .  In = mz + ~ mu (3.76) 

o~c o~ 

in which the components of m are mx = kxzn~ + k~ny and my = kxun~ + kyuny. 

The derivatives in Eq. (3.76) are obtained by differentiating Eq. (3.73), 

O r =  1 ( kyy ~ - X _ k~y Tl -_____~y ) (3.77) 
0r IDI r r 

and 

O r =  1 ( _ k x y ~ - X + k ~  ~7-y  
071 IDI r 7" 

(3.78) 

3.6.3 Boundary integral equation 

The boundary integral equation can be obtained from Eq. (3.61) when the point 
P C f~ coincides with a point p on the boundary F .  In this case, taking into ac- 
count Eqs. (3.72) and (3.75) and the analysis presented in Section 3.3, for points p 
where the boundary is smooth, we have 

P g i m l  v V u . I n  d s - O  
P---*p ,.IF�9 

gim f r  u V v . m  ds -- lu (p )  
P---'P ~ 2 

Consequently, the boundary integral equation takes the form 

1 u(p) -- 1 

1 ( V u . m ) ~ n r - u  V r . r n  ds (3.79) 

The kernels in the above equation are identical to those of Eqs. (3.28) or (3.37), 
except for the distance r ,  which is given by Eq. (3.73). 
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Equation (3.79) is used to determine the quantities u and 27u. m on the parts of 
the boundary where these are not prescribed. Subsequently, the solution at any 
point P C f~ is evaluated from Eq. (3.61). 

3.7 References 

The method of solving the potential equation by transforming it into a boundary 
integral equation is not recent but it goes back to the beginning of the last century. 
In 1900, Fredholm [1] employed it in the potential theory to determine the un- 
known boundary quantities from the prescribed ones. A detailed presentation of the 
method can be found in Kellog's book [2] on potential theory. However, the re- 
searchers abandoned the boundary integral equation method, as a solution method 
for potential problems, since it was practically impossible to solve the resulting 
singular boundary integral equations. The method was mainly limited to prove ex- 
istence theorems for the solution of the differential equations. 

Nevertheless, with the advent of modem computers the method came forth again 
and started slowly to be used as a computational method in the beginning of the 
1960's. Jaswon [3] and Symm [4], presented a solution algorithm for the potential 
equation; Jaswon and Ponter [5] developed a numerical technique to solve the 
boundary integral equation for the classical Saint-Venant torsion problem of non- 
circular bars. They adopted a formulation in terms of the warping function and 
solved a Neumann problem for the Laplace equation. Numerical results were 
obtained for bars with various cross-sectional shapes, such as ellipses with or 
without holes, rectangles, equilateral triangles and circles with notches. Mendelson 
[6] solved the same problem as a Dirichlet problem for the stress function. Later, 
Katsikadelis and Sapountzakis [7] formulated the boundary integral equations for 
the torsion problem of composite bars consisting of two or more materials. They 
developed the numerical technique for the solution of the boundary integral equa- 
tions and produced numerical results for composite cross-sections of elliptical 
shape with elliptical or circular inclusions, for hollow box-shaped cross-sections 
and for a rectangular cross-section with an I-shaped inclusion. Symm [8] solved 
the problem of conformal mapping for simply connected domains having arbitrary 
shapes onto the unit circle [w(z)[ -  1 of the complex domain. Christiansen [9] pre- 
sented a complete collection of the integral equations for the Saint-Venant torsion 
problem. 

In the last 20 years, the number of publications on BEM solutions for the potential 
equations has increased enormously. The reader is advised to look in the Boundary 
Elements Communications [10] or in the recently published Boundary Elements 
Reference Database [1 1]. For a more detailed study of the boundary integral equa- 
tion method, we refer to the books by Jaswon and Symm [12], and Gipson [13]. 
For the application of BEM to the potential problems, we refer to the books by 
Banerjee and Butterfield [14], Brebbia and Dominguez [15]. Finally, it is worth 
mentioning the books by Zauderer [16] and Mikhlin [17], which may be useful to 
readers interested in the theory of partial differential equations of elliptic type. 
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Problems 

3.1. Determine a partial solution of the equation 

~72u -- x y 

3.2. Evaluate the following integral over a circle ~ having radius R and being 
centered at point P(xo, yo) 

f v f d ~  

where 

1 
V - -  - -  ~ l l l " ,  

27r 
r - I Q -  P ] -  ~/(x - Xo) 2 + (y - yo) 2 

and 

f (x, y) -- C~o + (~1 x + ~2 Y 

3.3. Convert the domain integral 

O V  ~ ~ f d~ 

where 

1 
V - -  - -  ~ l t l " ,  

27r 
- I Q -  P I -  J ( ~ -  ~o) ~ + ( y -  yo) ~ 

to a line integral on the boundary F ,  for the following two cases 

(i) f - a o + c ~ l x + c ~ 2 y  
(ii) f - x  2+y2 

3.4. Derive the integral representations of the derivatives Ou/Onp and Ou/Otp, 
where u is the solution of the Laplace equation and np and tp are the direc- 
tions of the outward normal and the tangent to the boundary at point p C F ,  
respectively. 

3.5. Derive the integral representations of the derivatives Ou/Ox and Ou/Oy at 
points: (i) P C ~ ,  and (ii) p E F .  



Chapter 4 
Numerical Implementation 

of the BEM 

4.1 Introduction 

This chapter presents the numerical implementation of the BEM for solving the 
potential problems analyzed in the previous chapter. For realistic engineering ap- 
plications, an exact solution of the integral equation (3.29) is out of the question. A 
numerical, however, solution of the same equation is always feasible by employing 
the BEM. 

Let us consider an arbitrary domain ~ with boundary F .  The quintessence of the 
BEM is to discretize the boundary into a finite number of segments, not necessarily 
equal, which are called boundary elements. Two approximations are made over 
each of these elements. One is about the geometry of the boundary, while the other 
has to do with the variation of the unknown boundary quantity over the element. 
The usually employed boundary elements are the constant element, the linear ele- 
ment and the parabolic or quadratic element. On each element, we distinguish the 
extreme points or end points and the nodes or nodal points. The latter are the points 
at which values of the boundary quantities are assigned. In the case of constant 
elements the boundary segment is approximated by a straight line, which connects 
its extreme points. The node is placed at the mid-point of the straight line and the 
boundary quantity is assumed to be constant along the element and equal to its 
value at the nodal point (Fig. 4.1a). For linear elements, the boundary segment is 
approximated again by a straight line connecting its end points. The element has 
two nodes usually placed at the extreme points and the boundary quantity is as- 
sumed to vary linearly between the nodal values (Fig. 4.1b). Finally, for parabolic 
elements, the geometry is approximated by a parabolic arc. The element has three 
nodes, two of which are placed at the ends and the third somewhere in-between, 
usually at the mid-point (Fig. 4. l c). 
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Figure 4.1 Various types of boundary elements. 
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For linear and parabolic elements, the geometry of the segment is depicted isopara- 
metrically, that is the geometry and the boundary quantity are approximated over 
the element by polynomials of the same degree. For constant elements, the geome- 
try is depicted superparametrically, since it is represented with higher-order poly- 
nomial than that used to approximate the boundary quantity. Constant elements 
depict the boundary quantities discontinuously from element to element, in contrast 
to linear and parabolic elements, which depict them continuously. Although, the 
inter-element continuity ensures a better approximation of the boundary quantity, it 
gives rise to complications at comer points or at points where the boundary condi- 
tions change type (mixed boundary value problems). These difficulties can be 
overcome by employing discontinuous linear and parabolic elements, which do not 
have nodal points at the ends of the element (see Chapter 5). The numerical solu- 
tion of the integral equation (3.29) will be first presented by using constant bound- 
ary elements, because at this stage understanding the numerical implementation of 
the BEM overrides the need to incorporate more advanced numerical techniques, 
which improve the accuracy and efficiency of the BEM. 

4.2 The BEM with constant boundary elements 

The boundary F is discretized into N constant elements, which are numbered in 
the counter-clockwise sense. The values of the boundary quantity u and its normal 
derivative Ou/On (denoted also as ~L,, ) are assumed constant over each element 
and equal to their value at the mid-point of the element. 

The discretized form of Eq. (3.29) is expressed for a given point p, on 1-' as 

x ~ Ou(q) ~ f i ' :  Ov(pi,q) 1 , ~ .  v(pi q) ds,t + - u - - , u(q) ds,l (4.1) 
2 "J Onu Onq 

where Fj is the segment (straight line) on which the j - t h  node is located and over 
which integration is carried out, and p, is the nodal point of the i - th  element. For 
constant elements, the boundary is smooth at the nodal points, hence e(P) -- 1/2. 
Moreover, the values of u and Ou/On are constant on each element, so they can 
be moved outside the integral. Denoting by ~L J and u~ the values of u and u,,, 
respectively, on the j - t h  element, Eq. (4.1) may be written as 

+ F o v  . 
j:l J 07~ 

u~ (4.2) 

The integrals involved in the above equation relate the node p,, where the funda- 
mental solution is applied, to the node pj (j = 1, 2,..., N) (Fig. 4.2). Their values 
express the contribution of the nodal values u j and u{i to the formation of the 
value �89 u ~ . For this reason, they are often referred to as influence coefficients. 
These coefficients are denoted by /t~j and G,j, which are defined as 
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I?-Iij - f r Ov(pi, q) ds and aij - f r v(pi, q)ds (4.3) 
i Onq i 

where the point p, remains constant (reference point), while the point q varies 
over the j - t h  element (integration point). 

j + 2  
. . . .  ~ '  j + l  

3 - element 

/ .7 .,- ' ~,Pj-1 

i - element 

Figure 4.2 Nodal-point location and relative distances for 
constant element discretization. 

Introducing the notation (4.3) into Eq. (4.2), the discrete form of the solution be- 
comes 

N N 

l u ' +  ~_,fIou J - ~ G i j u ~  
2 j= l  1=1 

(4.4) 

Moreover, setting 

1 
H o - f/,:j - 2~,j (4.5) 

where 6 0 is the Kronecker delta, which is defined as 6 0 - 0 for i ~ j and 6 o -  1 
for i - j ,  Eq. (4.4) may further be written as 

N N 

Hij u r - ~ Gir u/i (4.6) 
j=]  ./=1 

Equation (4.6) is applied consecutively for all the nodes p, (i - 1,2,... ,  N) yield- 
ing a system of N linear algebraic equations, which are arranged in matrix form 

[H]{u} - [G]{u , ,}  (4.7) 
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where [H] and [G] are N x N square matrices, and {u} and {un } are vectors of 
dimension N .  

Let us assume mixed boundary conditions. In this case, the part F1 of the boundary 
on which u is described and the part F2 on which u,~ is described, are discretized 
into N1 and N2 constant elements, respectively (FI El F2 --- F ,  Na + N2 = N ). 
Hence, Eq. (4.7) again contains N unknowns, that is N -  N1 values of u on F2 
and N - N 2  values of un on F1. These N unknown quantities may be deter- 
mined from the system of Eqs. (4.7). 

Prior to solving the system of the equations, it is necessary to separate the unknown 
from the known quantities. Equations (4.7) may be written after partitioning of the 
matrices in the following way 

[ {U'}I ] {{Un}l } 
[[Hll] [H12] ] {'//,}2- [[Gill [G12]] {U'n }2 (4.8) 

where {U}l and {E~}2 denote the prescribed quantities on F1 and F2, respec- 
tively, while {u,~}i and {u}2 denote the corresponding unknown ones. Carrying 
out the multiplications and moving all the unknowns to the left hand side of the 
equation, we obtain 

[A]{X} = {B} (4.9) 

where 

[ A ] -  [[H,2] -[G~I]] (4.10a) 

{ x }  - {u,,}, (4.10b) 

{J~} = -[Hill {'~}1 + [('~712] {~-~,}2 (4.10c) 

[A] being a square matrix with dimensions N x N ,  and {X}, {B} vectors with 
dimension N .  

The previous rearrangement of matrices is effective when the N1 points where the 
values of u are prescribed, thus also the N2 points where the values of un are pre- 
scribed, are consecutive. Otherwise, the partitioning of the matrices in Eq. (4.8) 
should be preceded by an appropriate rearrangement of columns in [H] and [G]. 
Matrices [A] and {B} can also be constructed using another more straightforward 
procedure, which is based on the observation that matrix [A] will eventually con- 
tain all the columns of [HI and [G] that correspond to the unknown boundary val- 
ues of u and u,,, whereas vector {B} will result as the sum of those columns of 
[HI and [G], which correspond to the known values u and u , ,  after they have 
been multiplied by these values. It should be noted that a change of sign occurs, 
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when the columns of [G] or [H] are moved to the other side of the equation. The 
aforementioned procedure is more suitable for writing the computer program. 

The solution of the simultaneous equations (4.9) yields the unknown boundary 
quantities u and u , .  Therefore, knowing all the boundary quantities on 1-', the 
solution u can be computed at any point P(z ,y)  in the domain ~ by virtue of 
Eq. (3.31) for c(P) -- 1. Applying the same discretization as in Eq. (4.1), we arrive 
at the following expression 

N N 
- - a , j  

j= l  j= l  
(4.11) 

The coefficients G 0 and H0 are computed again from the integrals (4.3), but in 
this case the boundary point p, is replaced in the expressions by the field point P 
in Q (see Fig. 4.2). 

The partial derivatives Ou/Ox and Ou/Oy can be evaluated at points within Q by 
direct differentiation of Eq. (3.31) for c ( P ) =  1. Since the fundamental solution 
and its derivatives are continuous functions of x and y,  the differentiation passes 
under the integral sign giving 

ou f 
Ox 

Ov Ou 0 
Oz On Ox 

o_~_v 
07~ 

ds (4.12) 

O__~u = - f r  
Oy 

0v0u ,~--O(Ov)-- 
Oy O'n Oy On 

d,s (4.13) 

where the derivatives of the fundamental solution (3.13) are obtained as 

Ov 1 107" Ov 1 107" Ov 1 1 07" 
Ox 27r 7" Ox Oy 27r 7" Oy 07~ 27r r On 

1 (07"07" 07"07" 
27rr '2 On 0:I: Ot Oy 

O ( Ov ) 1 [ Or Or 07'07"] 
- + 0-7 oW 

o(ov) 
(4.14) 

Or Or ~ - z  Or Or r l - y  
Ox O~ 7. Oy Or] r 

Or Or Or Or = ~Tr. n - - - n : , :  + - - n y  , = V r.  t -  
On O~ 071 Ot 

O r  O r  
- - -  7t u + ~ n z  

o~ o,; 

Expressions regarding partial derivatives of r along with their derivation may be 
found in Appendix A. The last of Eqs. (4.14) is obtained by noting that the compo- 
nents of the tangential unit vector t are tx - -ny and ty - nx. Attention should 
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be paid to the evaluation of the derivatives 0 ( O r / O n ) / O x  and 0 ( O r / O n ) / O y .  
The differentiation with respect to n is carried out at point q((, r/) C F ,  while dif- 
ferentiation with respect to x or y is carried out at point P(x, y) c f~. 
Equations (4.12) and (4.13) are discretized in the same way as Eq. (4.1) and they 
yield the following bxpressions for the evaluation of the derivatives u,x and u,u at 
point P(x, y) 

N N 

Ou ) _ E ( I~pj ) x uj _ E ( Gp j ),~ uj n (4.15) U , x ( P ) -  -~x p j=, j=x 

u,y(P) - 
N N 

Ou _ E ( I~pj ) uy - E ( Gpy ),y u~ (4.16) 
~ Y  p j=l 'Y j=l 

where the influence coefficients are given by the integrals 

(Opj ) - f r  Ov(P,q) ds , 
,x J OX 

0 Ov(P,q) 
Onq 

ds 

(Gpj ),y - f r  Or(P, q) ds, 
~ J Oy 

0 0 v ( P , q )  ds 
(4.17) 

4.3 Evaluation of line integrals 

The line integrals Gij and /~,j defined in Eq. (4.3) are evaluated numerically using 
a standard Gaussian quadrature. Of course, these integrals can be evaluated through 
symbolic languages, e.g. Mathematica [l] or Maple [2], but the resulting expres- 
sions are very lengthy and usually cover more than a page. Hence, the advantage of 
accuracy over the numerical integration is rather lost, due to the complexity of the 
mathematical expressions. For this reason, the Gaussian integration remains as the 
most suitable method for computing line integrals (see Appendix B). Two cases are 
distinguished for the integrals of the influence coefficients. 

(i) Off-diagonal elements, i ~: j 
In this case the point p, (z,,y,) lies outside the j -e lement ,  which means that the 
distance r - [q - P,I does not vanish and, consequently, the integral is regular. 

The Gaussian integration is performed over the interval - 1  < ~ <_ 1, 

F s -1 f(~) d~ - wk f(~k) (4.18) 
k=l 

where n is the number of integration points (Gauss points), and ~k and wk 
(k - 1,2,..., n) are the abscissas and weights of the Gaussian quadrature of order 
n .  
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Let us consider the element j over which the integration will be carried out. This 
element is defined by the coordinates (xj,yj) and (xj+l,yj+l) of its extreme 
points, which are expressed in a global system having axes x and y,  and origin at 
point O (Fig. 4.3). Subsequently, a local system of axes x' and y' is introduced at 
point pj of the element. The local coordinates (x ~,0) of point q on the j - t h  
element are related to the global coordinates of the xy-system through the expres- 
sions 

X Xj+I + Xj  Xj+ 1 -- Xj r 
- + x (4.19a) 

2 gj 

Y-- YJ+~ + YJ + Yj+x -Yj x ~, gY _< x'_<-- g" j (4.19b) 
2 gj 2 2 

where g j is the length of the j - th element and is given in terms of the coordinates 
of the end points as 

YT 
! 

O 

s 

"~ ~ q ( z ~  j-element 

h.._ 
v 

X 

F i g u r e  4 . 3  Global and local coordinate systems. 

Expressions that map the global coordinates onto the integration interval [-1, +1] 
are obtained by introducing to Eqs. (4.19) the geometric relation 

I 
X 

ej/2 

Thus, the resulting coordinate transformation becomes 
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X ( ~ )  Xj+I  -~- Xj  Xj+ 1 --  Xj  
- + ~ (4.20a) 

2 2 

y ( ~ ) -  YJ+~ + YJ + YJ+~- YJ ~ (4.20b) 
2 2 

Moreover, it is 

2 

Yj+x - Yy 12 d~ ] 2 

- -___L~ d ~  ( 4 . 2 1 )  
2 

Hence, the Jacobian of the transformation is 

~j 
IJ(,~)l - y 

On the basis of the foregoing, the integrals of the influence coefficients are evalu- 
ated numerically in the following way: 

(a) The integral of G,j 

f f ,  1 cj e j ~  - v d . ~ -  - - ~ n [ ~ - ( ~ ) ]  d ~ - - -  c~[,-(,~)]w~ 
Gzj "J -~ 27r 2 471 .= 

(4.22) 

where 

~ ( ~ )  - ~ / [ z ( ~ )  - z, ]~ + [ y ( ~ )  - y, ]~ (4.23) 

(b) The integral of/-?/~j 

This integral can also be evaluated analytically according to Refs. [3, 4]. Referring 
to Fig. 4.4, we notice that 

ds cos r = r dc~ 

which can be used along with Eqs. (4.14) and (A.7) to derive the expression 

ITt,j-- f v  O~---Zds- f r  1 c ~  1 d a _ a J + ~ - a J  
i o n  j 27r r J 27r 27r 

(4.24) 

The angles aj+l and aj are computed from 

tan aj+l = Yy+x - Yi (4.25) 
Xj+ 1 --  X i 
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tan  aj --  yj  - y~ (4.26) 
X j  - -  X i 

where Xj+l ,  Yj+I and x j ,  yj are the coordinates of the extreme points of  the j - t h  
element. 

Figure 4.4 Definition of angles involved in the numerical 
integration over constant elements. 

(ii) D i a g o n a l  e l emen t s ,  i -- j 

In this case the node p~ coincides with node pj ,  and r lies on the element. Conse- 
quently, it is r - 7r/2 or ~b - 37r/2, which yields cos r  - 0 .  Moreover, we have 

xa+ 1 q- xa Yj+I q- Yj 
xp~ = , Yv, = 

2 2 

and 

r(~) - ~/[ x ( ~ ) -  **" ]~ + [Y(~ ) -  Y"' ]~ - 2e' I~1 (4.27) 

Hence, 

f r - -  F e ' / 2  1 Gjj = 1 g n r  ds ~ g n r  dr  
J 2rr - 2~  o 2re 

1[ 1"/2 1 gj 
= - r g n r  - r = [gn (g j / 2 )  - 11 

7r J0 7r 2 
(4.28a) 

and 
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-2--1 ~ coS C ds _ l_~ f t__ cos C d ~ 

27r o 
(4.28b) 

It should be noted that for higher order elements (e.g. linear or parabolic) analytical 
integration is not applicable, and for this reason, other integration techniques are 
employed (see Chapter 5). 

4.4 Evaluation of domain integrals 

The integral representation of the solution for the Poisson equation (3.36) may be 
written for the boundary which has been discretized into N constant elements, as 

N f ov e iu i -  v f d f ~ -  v ds+ u . ds 
2 = J OT~ j=l  ~ O n  

(4.29) 

In some cases the techniques presented in Section 3.4 for transforming the domain 
integral 

F ~ - f ~  v(p,, Q) f(Q) dt~r (4.30) 

to a boundary line integral are not suitable, and, if more advanced techniques are 
not utilized, the only recourse is a domain discretization. The domain f~ is divided 
into M two-dimensional elements or cells, e.g. triangular or rectangular cells (see 
Fig. 4.5), over which numerical integration is performed. Thus, employing two- 
dimensional Gaussian integration, Eq. (4.30) becomes 

M 

F ~ _ 
j=l  

wk v(pi, Qk ) f(Qk ) 
k=l 

Aj (4.31) 

where Qk and wk (k = 1,2,. . . ,n) are the k- th  integration point and correspond- 
ing weight for the Gaussian quadrature on the j - t h  cell, and A 9 (j = 1, 2,..., M) 
is the area of the cell (see Appendix B). 

By means of Eq. (4.31) and the notation introduced in Eqs. (4.3) and (4.5), 
Eq. (4.29) takes the following matrix form 

[HI{u} + {F} = [G]{u,~ } (4.32) 

Equations (4.32) are first reordered on the basis of the specified boundary condi- 
tions, and subsequently, they are solved for the unknown boundary quantities. The 
values of u at points inside f~ may then be computed from Eq. (4.29) for e ~ = 1. 
It should be noted that, for a point i (i = 1,2,..., M) lying on the j - t h  cell, the 
domain integral exhibits a logarithmic singularity and special care must be taken 
for its evaluation (see Appendix B and also Ref. [5]). 
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Figure 4.5 Discretization of domain f~ into triangular cells. 

4.5 The Dual Reciprocity Method for Poisson's equation 

The method presented in Section 3.5 for converting the domain integral 

I(P) = ~ v(P,Q)f(Q)d~]Q, P(x,y)E (f~u F), Q(x,y)e f't (4.33) 

to a boundary integral, though effective, has an inherent drawback, which is the 
determination of function F as the solution of Eq. (3.52) for a given source den- 
sity function f(x,y). Apparently, this procedure cannot be embedded in a com- 
puter code, since the user is responsible for providing this function and its normal 
derivative according to Eq. (3.55). This drawback can be overcome by employing 
the Dual Reciprocity Method (DRM) which was first introduced by Nardini and 
Brebbia [6] in 1982. They used the method to establish a consistent mass matrix in 
an effort to solve dynamic problems by utilizing the BEM and the static funda- 
mental solution. Since then, the DRM was further developed to solve elliptic prob- 
lems for which the fundamental solution could not be determined or was difficult 
to treat numerically, as well as to solve parabolic and hyperbolic problems em- 
ploying simple static fundamental solutions. Nonlinear problems have also been 
attacked by this method. For a detailed presentation of the DRM, the interested 
reader is referred to the book by Partridge et al. [7]. A brief description of the DRM 
is given next. 

Let us consider a set of M collocation points arbitrarily located in the domain f~ 
(see Fig. 4.6). According to the DRM the function f representing the source den- 
sity is approximated by radial basis functions series, namely 

AI 

f(Q(x,y)) - ~ ajOj(rjQ) (4.34) 
j=l 

where aj are M unknown coefficients and 4)j = (~j(rjQ) is a set of radial basis 
functions with argument 
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rjQ - - IQ-  PJi-  x/(x- xj) ~ + (y-  yj)~ (4.35) 

which is the distance between the field point Q(x,y) and the collocation point 
Pj(xj,yj).  Although, the radial basis functions are usually denoted in BEM litera- 
ture by j~(r), in the present book the notation Cj(r) is preferred to avoid confu- 
sion with the source density function f .  It should be noted that if the function f is 
defined on the boundary F ,  the total number of points employed in the series 
(4.34) can be chosen to be M + N instead of M ,  where N is the number of 
boundary nodal points used for the discretization of the boundary. 

n 

Figure 4.6 Integration over a plane domain ~2 bounded by a curve F .  

The unknown coefficients aj are determined in the following way. First, we apply 
Eq. (4.34) to all collocation points obtaining expressions of the form 

hi 

f, - f ( ~ ) -  ~-~ajCj(rj~) ( i -  1,2, . . . ,M) (4.36) 
j=l 

where 

(4.37) 

Using matrix notation Eq. (4.36) is written as 

{f} - [~]{a} (4.38) 

in which {f} is a vector containing the values of function f at the M collocation 
points, {a} is the vector of the M unknown coefficients and [ ~ ] -  [r an 
M x M known matrix. 

Assuming that [~] is not singular, Eq. (4.38) can be solved to yield 

{a} - -  [(I)] -1 {f} (4.39) 
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Substituting Eq. (4.34) into Eq. (4.33) gives 

M 

I(P) - ~ ai [ L  v(P, Q)Cj(rjQ)d~Q ] (4.40) 
j= l  

The domain integrals in the above equation can be converted to boundary line 
integrals using the procedure presented in Section 3.5 (ii). For this purpose, we 
introduce first the functions gj - ~2j(r) (j = 1, 2,..., M), which are determined as 
the particular solution of the equations 

V2~j -- Cy(r) (4.41) 

Note that the derivatives involved in the Laplace operator are taken with respect to 
point Q(x, y) . 
Subsequently, we apply Eq. (3.55)for the domain f~*C_ f~ setting f -  Ca and 
F - ~j, which yields the following expression 

~ . v(P, O) r df~Q =f .  v(P, (2)V2iza(O)df~Q 

= 

+ f . .  
v(P, q) Og.,(q___~) _ it,(q) Or(P, q______~) dsq 

On,~ Onq 
(4.42) 

where c(P) 1, ~ 0 depending on whether the point P lies inside f~*, F* - , on or 
outside ~*, respectively. 
Substituting the domain integral of Eq. (4.42) into Eq. (4.40), the latter becomes 

M [ I ( P ) -  j~la, e(P)ftj(P)+ ~,. v(P,q) O(Lj(q) itj(q) OV(P'q) dsq 
Onq Onq 

(4.43) 

The boundary integrals in Eq. (4.43) are approximated by utilizing the same dis- 
cretization as that adopted for the evaluation of the unknown boundary quantities 
(for the case F* = F ). Applying Eq. (4.43) for all the N boundary nodal points by 
letting point P to coincide with each-of the nodal points, we obtain the vector {F} 
of Eq. (4.32) as 

{F} - ( [G]  [(o)]- [H] [/)] ) {a} (4.44) 

where [G] and [H] are the matrices defined in Section 4.2 and [/_)], [(~] are 
N x M matrices with entries 

Uij - uj(rji ) (4.45a) 
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Q~j ~ 
O~j(rj~) 

O n  
(4.45b) 

where i - 1, 2,..., N ,  j - 1, 2,..., M and 

rji - - [Pi -  Pj[ - ~/(xi  - x j )2  + (Yi - y j )2  , p z c F  

Finally, combining Eqs. (4.39) and Eq. (4.44) we arrive at 

{F} = [R]{f} (4.46) 

where 

In] - (IV} [0] - [HI [0])  (4.47) 

Apparently, Eq. (4.46) states that the vector {F} is expressed in terms of the val- 
ues of the source density function f at the collocation points. This procedure is 
suitable when the function f is defined by a set of scattered values. It should be 
emphasized that the involvement of domain nodal points does not spoil the pure 
boundary character of BEM, since the discretization into elements and the integra- 
tion are limited only to the boundary. 

The success of DRM depends on the choice of the radial basis functions. Many 
types of radial basis functions have been reported in the literature, e.g. polynomial 
type (r - 1 + 7"+ r 2 + ... ), multiquadrics ( r  - (7 .2 + c2) 1/2 where c is an arbi- 
trary constant), thin plate splines (r = r 2 g n r ) ,  etc. In general, the series of 
Eq. (4.34) must, first, converge to f in some sense for M ~ cx~ and, second, en- 
sure a good approximation of f for a relatively small number of collocation 
points. For more information about the radial basis functions the reader is advised 
to look in [8, 9, 10]. 

4.6 Program LABECON for solving the Laplace 
equation with constant boundary elements 

On the basis of the analysis presented in the previous sections, a computer program 
has been written in FORTRAN language [11] for the solution of boundary value 
problems described by the Laplace equation. This program employs constant ele- 
ments to approximate the line integrals. 

Main program 

The structure of program LABECON is described by the macro flow chart shown 
of Fig. 4.7. The main program defines the maximum dimensions of the arrays and 
opens two files. The file containing the data and the file in which the results are 
written. Next, it calls the following eight subroutines: 

INPUT Reads the data from INPUTFILE. 
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Figure 4.7 Macro flow chart of program LABECON. 
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GMATR Forms the matrix [G] defined by Eq. (4.3). 

HMATR Forms the matrix [H] defined by Eqs. (4.5) and (4.3). 

ABMATR Rearranges the matrices [HI and [G] according to the boundary 
conditions and forms the matrices [A] and {B} of Eq. (4.9). 

SOLVEQ Solves the system of linear equations [A]{X} = {B} using Gauss 
elimination. 

REORDER Rearranges the boundary values and forms the vectors {u} and 

UINTER Computes the values of u at the internal points. 

OUTPUT Writes the results in OUTPUTFILE. 

The variables and arrays introduced in the program along with their meaning are 
given below: 

N Number of boundary elements and boundary nodes. 

IN Number of internal points where the solution is computed. 

INDEX One-dimensional array in which a type of boundary conditions is 
assigned to the nodes. It is INDEX(J)= 0 when u is prescribed, 
while INDEX(J)= 1 when Ou/On is prescribed. 

XL One-dimensional array containing the z coordinates of the ex- 
treme points of all the elements. 

YL One-dimensional array containing the y coordinates of the ex- 
treme points of all the elements. 

XM One-dimensional array containing the x coordinates of all the 
boundary nodes. 

YM One-dimensional array containing the y coordinates of all the 
boundary nodes. 

G Square matrix defined by Eq. (4.3). 

H Square matrix defined by Eqs. (4.5). 

A Square matrix defined by Eq. (4.10a). 

UB One-dimensional array. At input, it contains the boundary values 
of u ,  if INDEX(J)= 0, or Ou/On, if INDEX(J)= 1. At output it 
contains all the boundary nodal values of u .  

UNB One-dimensional array containing the right hand side vector of 
equation [A]{X} - {B} given by Eq. (4.10c). At the end it con- 
tains the boundary nodal values of Ou/On. 

XIN One-dimensional array containing the z coordinates of the inter- 
nal points at which the values of u are computed. 
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YIN One-dimensional array containing the y coordinates of the inter- 
nal points at which the values of u are computed. 

UIN One-dimensional array containing the computed values of u at 
the internal points. 

Subroutine INPUT 

The subroutine INPUT reads in free FORMAT all the required data. The data have 
been written in INPUTFILE, to which the user has assigned a specific name as 
required by the main program. This file contains the following data: 

1. User's name. One line with the name of the user. 

2. Title. One line with the title of the program. 

3. Extreme points of  the boundary elements. N pairs of values consisting of the 
coordinates XL and YL of the extreme points. They are given in the positive 
sense, which for a closed domain f~ is counter-clockwise (Fig. 4.8a), whereas 
for an open domain (external domain) is clockwise (Fig. 4.8b). 

4. Boundary conditions. N pairs of values consisting of either INDEX---0 and u ,  
or INDEX= 1 and Ou/On. 

5. Internal points. IN pairs of values consisting of the coordinates XIN and YIN of 
the internal points at which the values of u will be computed. 

Finally, the subroutine INPUT writes the data in OUTPUTFILE, to which the user 
assigns a specific name. 

Figure 4.8 Positive direction and normal vector on the boundary 
of closed and open domains f~. 

Subroutine GMATR 

The subroutine GMATR forms the matrix G defined in Eq. (4.3) by using the 
subroutines RLINTC and SLINTC. These subroutines perform the following tasks: 
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The RLINTC, (R)egular (L)ine (Int)egral for (C)onstant Elements, computes the 
off-diagonal elements of the G matrix. 

The SLINTC, (S)ingular (L)ine (Int)egral for (C)onstant Elements, computes the 
diagonal elements of the G matrix. 

Subroutine RLINTC 

This subroutine computes regular line integrals on constant elements employing a 
four-point Gaussian integration scheme (see Appendix B). It uses the coordinates 
of the i - th  nodal point and those of the extreme points of the j - t h  element (points 
j and j + 1), it renames them to 0, 1 and 2 (see Fig. 4.9), respectively, and then it 
evaluates the integral of Eq. (4.22). 

j + l  

4 Gauss points 

(2 (1) 2 

r(~k), k = 1,2,3,4 

(o) 

Figure 4.9 Four-point Gaussian quadrature and point numbering 
for subroutine RLINTC. 

Subroutine SLINTC 

This subroutine uses the coordinates of the extreme points of the j - t h  element 
(points j and j + 1), it renames them to 1 and 2, respectively, and then calculates 
the integral on the basis of Eq. (4.28a). 

Subroutine HMATR 

It forms the matrix H defined in Eq. (4.5). The diagonal elements of the matrix 
are Hii - 0 (see Eq. 4.28b), while the off-diagonal elements are calculated using 
the subroutine DALPHA. 

Subroutine DALPHA 

This subroutine uses the coordinates of the i - th  nodal point and those of the 
extreme points of the j - t h  element (points j and j + 1), it renames them to 0, 1 
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and 2 (see Fig. 4.9), respectively, and then calculates the off-diagonal elements Hij 
according to Eq. (4.24). 

Subroutine ABMATR 

This subroutine generates the matrix A and the vector B of Eq. (4.9) from the col- 
umns of matrices G and H .  The J-th column of matrix A consists of the corre- 
sponding column of H ,  if u is unknown (INDEX(J)-- 1), or that of - G ,  if un is 
unknown (INDEX(J)--0). The vector B results as the sum of the columns of - H  
multiplied by the corresponding known values of u (INDEX(J)--0) and the col- 
umns of G multiplied by the corresponding known values of un (INDEX(J)= 1). 
It should be noted that in the construction of A and B a change of sign occurs, 
when columns of H or G are transferred, respectively, to the left- or to the right- 
hand side of the equation (see Eqs. 4.10). 

Subroutine SOLVEQ 

This subroutine employs the matrix A and the vector B (= UNB) and calls the 
subroutine LEQS, which solves the system of linear equations. The solution is 
stored in the vector UNB. 

Subroutine LEQS 

This subroutine uses the matrix A, the vector B and the parameter N to solve the 
system of equations AX = B by Gauss elimination. The solution is stored in the 
vector /3. The output parameter LSING takes the value LSING = 0,  when the 
matrix A is regular, or LSING : 1, when the matrix A is singular. 

Subroutine REORDER 

This subroutine rearranges the vectors UB and UNB on the basis of the boundary 
condition vector INDEX. At input the two vectors contain the known and the com- 
puted boundary values of u and u,~, respectively, while at output UB contains all 
the values of u and UNB all the values of its normal derivative Ou/On. 

Subroutine UINTER 

This subroutine uses the boundary values of the vectors UB and UNB to compute 
the values of u at the specified internal points on the basis of Eq. (4.1 I). 

The evaluation of derivatives u,~ and u,y at the internal points is left as an exercise 
to the reader (see Problem 4.1). 

Subroutine OUTPUT 

It prints all the results in the output file. First, it lists the coordinates of the bound- 
ary nodal points along with the corresponding nodal values of u and Ou/On, and 
then the coordinates of the internal points and the computed values of u at those 
points. 

In the sequel, we provide the listing of program LABECON: 
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C 
PROGRAM LABECON 

C 
C This program solves the two dimensional (LA)place equation 
C using the (B)oundary (E)lement method with (CON) stant 
C boundary elements 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
CHARACTER*15 INPUTFILE, OUTPUTFILE 

C 
C Set the maximum dimensions 
C 

PARAMETER (N= 16 ) 
PARAMETER (IN--9) 

C 
C N= Number of boundary elements which is equal to the number 
C of boundary nodes 
C IN= Number of internal points where the function u is calculated 
C 

DIMENSION INDEX (N) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N), G (N, N), H (N, N) 
DIMENSION UB (N), A (N, N), UNB (N), XIN ( IN), YIN ( IN), UIN (IN) 

C 
C Read the names and open the input and output files 
C 

WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*,' (A) ' ) INPUTFILE 
WRITE (*, ' (A) ') ' Name of the OUTPUTFILE (max.15 characters) ' 
READ (*,' (A) ' ) OUTPUTFILE 
OPEN (UNIT=I, FILE=INPUTFILE) 
OPEN (UNIT=2, FILE=OUTPUTFILE) 

C 
C Read the data from INPUTFILE 
C 

CALL INPUT (XL,YL,XIN,YIN, INDEX,UB,N, IN) 
C 
C Compute the G matrix 
C 

CALL GMATR (XL,YL,XM,YM,G,N) 
C 
C Compute the H matrix 
C 

CALL HMATR (XL,YL,XM,YM, H,N) 
C 
C Form the system of equations AX=B 
C 

CALL ABMATR (G,H,A,UNB,UB, INDEX,N) 
C 
C Solve the system of equations 
C 

CALL SOLVEQ (A, UNB, N, LSING) 
C 
C Form the vectors U and UN of all the boundary values 
C 

CALL REORDER (UB,UNB, INDEX,N) 
C 
C Compute the values UIN of u at the internal points 
C 

CALL UINTER (XL,YL,XIN, YIN,UB,UNB,UIN, N, IN) 

C 
C Print the results in the OUTPUTFILE 
C 

CALL OUTPUT (XM, YM,UB,UNB,XIN,YIN,UIN,N, IN) 
C 
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C Close input and output files 
C 

CLOSE ( 1 ) 
CLOSE ( 2 ) 

STOP 
END 

C 
C 
C== ......................... 
C 

SUBROUTINE INPUT (XL, YL, XIN, YIN, INDEX, UB, N, IN) 
C 
C This subroutine reads the data from the input file 
C and writes them in the output file 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
CHARACTER* 80 NAME, TITLE 
DIMENSION XL (N+I) ,YL (N+I) ,XIN (IN), YIN (IN), INDEX (N) ,UB (N) 

WRITE (2, I00) 
I00 FORMAT(' ',69('*')) 

C 
C Read user' s name 
C 

READ(I,' (A)')NAME 
C 

WRITE (2,' (A) ' )NAME 
C 
C Read the title of the program 
C 

READ (I,' (A) ' )TITLE 

WRITE (2,' (A)')TITLE 

WRITE (2,200)N, IN 
200 FORMAT (//' BASIC PARAMETERS'//2X, 'NUMBER OF BOUNDARY ELEMENTS=' 

I,I3/2X, 'NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED 

i=' ,I3) 
C 
C Read the coordinates XL,YL of the extreme points of the boundary elements 

C 
READ(I,*) (XL(I) ,YL(I) ,Iml,N) 

C 
C Write the coordinates in the output file 
C 

WRITE (2,300) 
300 FORMAT(//2X, 'COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ' 

i' ELEMENTS ' ,//2X, 'POINT' , 9X, 'XL' , 15X, 'YL' ) 
DO 20 I=I,N 

20 WRITE(2,400) I,XL(I),YL(I) 
400 FORMAT(2X, I3,2 (3X,EI4.5)) 

C 
C Read the boundary conditions and store them in UB(I). 
C If INDEX(I)=0, the value UB(I) is the prescribed value of u. 
C If INDEX(I)=1, the normal derivative un is prescribed. 

C 
READ(I,*) (INDEX(I) ,UB(I) ,I=I,N) 

C 
C Write the boundary conditions in the output file 
C 

WRITE (2,500) 
500 FORMAT(//2X, 'BOUNDARY CONDITIONS'//2X, 'NODE' ,6X, 'INDEX', 

1 7X, ' PRESCRIBED VALUE' ) 
DO 30 I=I,N 



Chapter 4 Numerical Implementation of the BEM 69 

30 WRITE(2,600) I,INDEX(I),UB(I) 
600 FORMAT (2X, I3,9X, II,8X,EI4.5) 

C 
C Read the coordinates of the internal points 

C 
READ(I,*) (XIN(I),YIN(I),I=I,IN) 
RETURN 
END 

C 
C 
C= 
C 

SUBROUTINE GMATR (XL,YL,XM, YM, G,N) 

C 
C This subroutine computes the elements of the G matrix 

C 
IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I) ,YL (N+I) ,XM(N) ,YM(N) 
DIMENSION G (N, N) 

C 
C Compute the nodal coordinates and store them in the arrays 

C XM and YM 
C 

XL (N+I) =XL (I) 
YL (N+I) =YL (I) 
DO i0 I=I,N 
XM(I) - (XL (I) +XL (I+l))/2. 

i0 YM(I) =(YL(I) +YL(I+I) )/2. 

C 
C Compute the elements of matrix G 

C 
DO 20 I=I,N 
DO 20 J=I,N 
JPI=J+I 
I F ( I. NE. J) THEN 
CALL RL INTC (XM ( I ), YM ( I ), XL ( J), YL ( J), XL ( JP 1 ), YL ( JP 1 ), RE SULT) 

G ( I, J) =RESULT 
ELSEIF ( I. EQ. J) THEN 
CALL SLINTC (XL (J), YL (J), XL (JPl), YL (JPI), RESULT) 
G ( I, J) =RESULT 
ENDIF 

20 CONTINUE 
RETURN 
END 

C 
C 
::::::::::::::::::::::: ............... == .... 

c 
SUBROUTINE RLINTC (X0 , Y0 , XI, Y1 , X2 , Y2 , RESULT) 

C 
C This subroutine computes the off-diagonal elements of the 

C matrix G 
C 
C RA= The distance of point 0 from the Gauss integration point 
C on the boundary element 

C 
C WG= The weights of the Gauss integration 

C 
C XI= The coordinates of the Gauss integration points in the 
C interval [-1,1] 

C 
C XC,YC= The global coordinates of the Gauss integration points 

C 
IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XC (4), YC (4), XI (4) ,WG (4) 
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DATA XI/-0. 86113631, -0. 33998104 , 0. 33998104 , 0 . 86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
PI=ACOS (- i. ) 
AX~ (X2-Xl)/2. 
AY= (Y2-YI)/2. 
BX= (X2+Xl)/2. 
BY= (Y2+YI)/2. 

Compute the line integral 

RESULT=0. 

DO 30 I=l, 4 
XC ( I ) =AX*XI ( I ) +BX 
YC ( I ) =AY*XI ( I ) +BY 
RA=SQRT ( (XC (I) -X0) **2+ (YC (I) -Y0) **2) 

30 RESULT=RESULT+DLOG (RA) *WG (I) 
SL-2. *SQRT (AX**2+AY**2) 
RESULT=RESULT*SL/(4. *PI) 
RETURN 
END 

C 
C 
:::::::::::::::::::::::::::::: .... 

C 
SUBROUTINE SLINTC (Xl , Y1 , X2 , Y2 , RESULT) 

This subroutines computes the diagonal elements of the matrix G 

IMPLICIT REAL*8 (A-H, O-Z) 
PI=ACOS (-i. ) 
AX= (X2-XI)/2. 
AY= (Y2-YI) /2. 
SL=SQRT (AX**2 +AY**2) 
RESULT=SL* (DLOG (SL) -I. )/PI 
RETURN 
END 

PI=ACOS(-I.) 

XL (N§ =XL (I) 
YL (N+I) =YL (I) 
DO I0 I=l, N 
XM(I) = (XL (I) +XL (I+l))/2. 

I0 YM(I)=(YL(I)+YL(I+I))/2. 

Compute the elements of the H matrix 

DO 20 I=I,N 
DO 20 J=I,N 
IF (I.NE. J) THEN 
CALL DALPHA (XM ( I ), YM ( I ) , XL (J) , YL (J) , XL (J+ 1 ) , YL (J+ 1 ) , RESULT) 
H ( I, J) =RESULT 
ELSEIF (I. EQ. J) THEN 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N) 
DIMENSION H (N, N) 

This subroutine computes the elements of the H matrix 

C 
C 
C================================================================= 

C 
SUBROUTINE HMATR (XL,YL,XM,YM,H,N) 
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H(I,J) =-0.5 
ENDIF 

20 CONTINUE 
RETURN 
END 

C 
C 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE DALPHA (X0 , Y0 , X1 , Y1 , X2 , Y2 , RESULT) 

This subroutine computes the off diagonal elements of 
the H matrix 

IMPLICIT REAL*8 (A-H,O-Z) 
PI=ACOS (-i. ) 
DYI=YI -Y0 
DXI-XI -X0 
DY2 =Y2 - Y0 
DX2=X2 -X0 
DLI= SQRT (DXI* *2 +DYI* *2 ) 
COSI=DXI/DLI 
SINI=DYI/DLI 
DX2 R-DX2 * COS 1 +DY2 * S IN1 
DY2R= - DX2 * S IN1 +DY2 * COS 1 
DA=ATAN2 (DY2R, DX2R) 
RESULT=DA/(2. *PI) 

RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

c 
SUBROUTINE ABMATR (G,H,A,UNB,UB, INDEX,N) 

This subroutine rearranges the matrices G and H and produces 
the matrices A and B=UNB 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION G (N, N), H (N, N) , A (N, N) , UNB (N) , UB (N) , INDEX (N) 

Reorder the columns of the system of equations and 
store them in A 

DO 40 J=I,N 
IF (INDEX (J) . EQ. 0) THEN 
DO 20 I=I,N 

20 A(I,J) =-G(I,J) 
ELSEIF (INDEX (J) .NE. 0) THEN 
DO 30 I=I,N 

30 A(I,J) =H(I,J) 
END IF 

40 CONTINUE 

Compute the right hand side vector and store it in UNB 

DO 50 I=l, N 
UNB (I) =0. 
DO 60 J=I,N 
IF ( INDEX (J) . EQ. 0 ) THEN 
UNB (I) =UNB (I) -H (I, J) *UB (J) 
ELSEIF (INDEX (J) .NE. 0) THEN 
UNB (I) =UNB (I) +G (I, J) *UB (J) 
ENDIF 

6 0 CONTINUE 
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C 
C 
C=-- 

50 CONTINUE 
RETURN 
END 

SUBROUTINE SOLVEQ (A, UNB, N, LSING) 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION A (N, N), UNB (N) 
CALL LEQS (A, UNB, N, LSING) 
IF (LSING. EQ. 0) THEN 
WRITE (2,150) 

150 FORMAT(/, '',69('*')//2X'The system has been solved regularly'/) 
ELSEIF (LSING. EQ. 1) THEN 
WRITE (2,170) 

170 FORMAT (/, ' ', 69 ( ' *' )//2X'The system is singular'/) 
ENDIF 
RETURN 
END 

C 
C 
C=- 

SUBROUTINE LEQS (A, B, N, LSING) 
C 
C This subroutine uses Gauss elimination to solve 
C a system of linear equations, [A]{X}={B}, where 
C A : One-dimensional array which contains the occasional row of 
C the two-dimensional array of the coefficients of the unknowns 
C B : One-dimensional array which contains the known coefficients 
C N : Integer denoting the number of the unknowns 
C LSING: Integer taking the values: 
C LSING = 0, if the system has been solved regularly 
C LSING = I, if the system is singular 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION A(1),B(1) 

LSING=0 
jjz -N 
DO I0 J--I,N 

JY-J+I 
JJ-JJ+N+I 
AMAX= 0.0 
IHELP=JJ- J 

DO 20 I=J,N 
IJ=IHELP+I 
IF(ABS (AMAX) -ABS(A(IJ) ) ) 30,20,20 

30 AMAX=A (IJ) 
IMAX=I 

2 0 CONTINUE 
IF (ABS (AMAX) . EQ. 0. ) THEN 

LS ING= 1 
RETURN 

END IF 
II=J+N* (J-2) 
IHELP= IMAX- J 
DO 40 K=J,N 

II=II+N 
I2sII+IHELP 
ATEMP =A ( I 1 ) 
A(II) =A(I2) 
A ( I2 ) =ATEMP 
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C 
C 
C- 

40 A (Ii) =A (Ii)/AMAX 
ATEMP=B (IMAX) 
B (IMAX) =B (J) 
B (J) =ATEMP/AMAX 

IF (J-N) 50,70,50 
50 IQS=N* ( J- 1) 

DO I0 IX-JY,N 
IXJ=IQS+IX 
IHELP=J- IX 
DO 60 JX=JY,N 

IJREF=N* (JX-I) +IX 
JJX=IJREF+IHELP 

60 A (IJREF) =A (IJREF) - (A (IXJ) *A (JJX)) 
I0 B (IX) =B (IX) -B(J) *A(IXJ) 
70 NY=N- 1 

NN=N*N 
DO 80 J=I,NY 

II=NN-J 
I2=N-J 
I3--N 

DO 80 K=I,J 
B (I2) =B (I2) -A (II) *B (I3) 
II=II-N 

80 I3=I3 -I 
RETURN 
END 

C 
SUBROUTINE REORDER (UB, UNB, INDEX, N) 

C 
C This subroutine rearranges the arrays UB and UNB in such a way 
C that all values of the function u are stored in UB while all 
C the values of the normal derivative un are stored in UNB 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION UB (N) , UNB (N), INDEX (N) 

C 
C 
C= 

DO 20 I=I,N 
IF (INDEX (I)) 20,20, i0 

I0 CH-UB (I) 
UB(i) =~(i) 
UNB (I)  =CH 

20 CONTINUE 
RETURN 
END 

C 
SUBROUTINE UINTER (XL, YL , XIN, YIN, UB , UNB , UIN, N, IN) 

C 
C This subroutine computes the values of u at the internal points 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+ 1 ), YL (N+ 1 ), XIN ( IN), YIN ( IN), UB (N), UNB (N), UIN (IN) 

C 
C Compute the values of u at the internal points 
C 

DO i0 K=I, IN 
UIN (K) =0. 
DO 20 J=I,N 
JPI=J+I 
CALL DALPHA (XIN (K), YIN (K), XL (J), YL (J), XL (JPI) , YL (JPI), RESH) 
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CALL RLINTC (XIN (K), YIN (K), XL (J), YL (J), XL (JPl), YL (JPl), RESG) 
20 UIN(K) =UIN(K) +RESH*UB (J) -RESG*UNB (J) 
I0 CONTINUE 

RETURN 
END 

C 
C 
C .................................................................. 
C 

SUBROUTINE OUTPUT (XM, YM, UB, UNB, XIN, YIN, UIN, N, IN) 
C 
C This subroutine prints the results in the output file. 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XM (N), YM (N), UB (N), UNB (N) 
DIMENSION XIN (IN), YIN ( IN), UIN (IN) 

C 
C 
C= 

WRITE (2, i00) 

i00 FORMAT ( ' ', 69 ( ' *' )///IX, ' RESULTS'///2X, ' BOUNDARY NODES'// 
1 1IX, 'X' , 15X, 'Y' , 15X, 'U' , 15X, 'Un'/) 

DO I0 I=I,N 
I0 WRITE(2,200) XM(I),YM(I),UB(I),UNB(I) 

200 FORMAT (4 (2X, El4.5) ) 

WRITE (2,300) 
300 FORMAT ( //, 2X, ' INTERNAL POINTS' / / 10X, ' X' , 15X, ' Y' , 1 IX, 

1 ' SOLUTION U'/) 

DO 20 K=I,IN 
20 WRITE(2,400) XIN(K),YIN(K),UIN(K) 

400 FORMAT(3 (2X,EI4.5)) 
WRITE (2,500) 

500 FORMAT (/, ' ', 69 ( ' * ' ) ) 
RETURN 
END 

Example 4.1 

The scope of this example is to illustrate the use of program LABECON by solving 
a simple potential problem. The domain f~ is a square with mixed boundary condi- 
tions (Fig. 4.10). The boundary is discretized into 16 constant elements and the 
solution is sought at 9 internal points (Fig. 4.11 ). 

The exact solution is: u (x, y ) = 100 (1 + x ). 

In this example the number of elements (N = 16) is relatively small and thus the 
data file may be created manually. However, if a rectangular domain is discretized 
into a large number of elements, one should form the data file by using the program 
RECT-I.FOR included in the CD-ROM which is provided with the book. 
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Figure 4.10 Square domain f~ and boundary conditions 
of Example 4.1. 

Figure 4.11 Boundary element discretization and 
internal points of Example 4.1. 

J.T. KATSIKADELIS 
Example 4.1 

EXAMPLE 4.1 (DATA) 
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.00000000 

.25000000 

.50000000 

.75000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
.75000000 
.50000000 
.25000000 
.00000000 
.00000000 
.00000000 
.00000000 

.00000000 

.00000000 

.00000000 

.00000000 
200.00000000 
200.00000000 
200.00000000 
200.00000000 

.00000000 

.00000000 

.00000000 

.00000000 
I00.00000000 
i00.00000000 
i00.00000000 
i00.00000000 

0.25 0.25 
0.50 0.25 
0.75 0.25 
0.25 0.50 
0.50 0.50 
0.75 0.50 
0.25 0.75 
0.50 0.75 
0.75 0.75 

. 00000000  

.00000000  

.00000000  

.00000000  

.00000000  

.25000000 

.50000000 

.75000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
.75000000 
.50000000 
.25000000 

EXAMPLE 4.1 (RESULTS) 

********************************************************************* 

J.T. KATSIKADELIS 
Example 4.1 

BASIC PARAMETERS 

NUMBER OF BOUNDARY ELEMENTS= 16 
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS 

POINT XL YL 
1 .00000E+00 .00000E+00 
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2 .25000E+00 .00000E+00 
3 .50000E+00 .00000E+00 
4 .75000E+00 .00000E+00 
5 .10000E+01 .00000E+00 
6 .10000E+01 .25000E+00 
7 .10000E+01 .50000E+00 
8 .10000E+01 .75000E+00 
9 .10000E+01 .10000E+01 

i0 .75000E+00 .10000E+01 
ii .50000E+00 .10000E+01 
12 .25000E+00 .10000E+01 
13 .00000E§ .10000E+01 
14 .00000E+00 .75000E+00 
15 .00000E§ .50000E+00 
16 .00000E+00 .25000E+00 

BOUNDARY CONDITIONS 

NODE INDEX PRESCRIBED VALUE 
1 1 .00000E+00 
2 1 .00000E§ 
3 1 .00000E+00 
4 1 .00000E+00 
5 0 .20000E+03 
6 0 .20000E+03 
7 0 .20000E+03 
8 0 .20000E+03 
9 1 .00000E+00 

I0 1 .00000E+00 
II 1 .00000E+00 
12 1 .00000E+00 
13 0 .10000E+03 
14 0 .10000E+03 
15 0 .10000E+03 
16 0 .10000E+03 

The system has been solved regularly 

RESULTS 

BOUNDARY NODES 

X Y U Un 

.12500E+00 .00000E+00 .II188E+03 .00000E§ 

.37500E+00 .00000E+00 .13732E+03 .00000E+00 

.62500E+00 .00000E+00 .16268E+03 .00000E+00 

.87500E+00 .00000E+00 .18812E+03 .00000E+00 

.10000E+01 .12500E+00 .20000E+03 .I0552E+03 

.10000E+01 .37500E+00 .20000E+03 .98417E+02 

.10000E+01 .62500E+00 .20000E+03 .98417E+02 

.10000E+01 .87500E+00 .20000E+03 .I0552E§ 

.87500E+00 .10000E+01 .18812E+03 .00000E+00 

.62500E+00 .10000E+01 .16268E+03 .00000E+00 

.37500E+00 .10000E+01 .13732E+03 .00000E+00 

.12500E+00 .10000E+01 .II188E+03 .00000E+00 

.00000E+00 .87500E+00 .10000E+03 -.I0552E+03 

.00000E§ .62500E+00 .10000E+03 -.98417E+02 
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.00000E+00 .37500E+00 .10000E+03 

.00000E+00 .12500E+00 .10000E+03 
.98417E+02 
.10552E+03 

INTERNAL POINTS 

X Y SOLUTION U 

.25000E+00 .25000E+00 .12489E+03 

.50000E+00 .25000E+00 .15000E+03 

.75000E+00 .25000E+00 .17511E+03 

.25000E+00 .50000E+00 .12495E+03 

.50000E+00 .50000E+00 .15000E+03 

.75000E+00 .50000E+00 .17505E+03 

.25000E+00 .75000E+00 .12489E+03 

.50000E+00 .75000E+00 .15000E+03 

.75000E+00 .75000E§ .17511E+03 

Table 4.1 Computed boundary and internal values for various boundary 
discretizations of Example 4.1. 

Point 
Number of boundary elements, N 

16 48 80 112 144 
Exact 

Values of u at the boundary nodes 

111.88 

137.32 

162.68 
188.12 

112.36 

137.47 

162.53 
187.64 

112.43 

137.48 

162.52 
187.57 

112.46 

137.49 

162.51 
187.54 

112.47 

137.49 

162.51 
187.53 

112.50 

137.50 

162.50 
187.50 

Values of u,, at the boundary nodes 

105.520 
98.417 

98.215 
99.800 

99.486 
99.909 

99.665 
99.946 

99.774 
99.964 

100.000 
100.000 

Values of u at the internal points 

124.89 

150.00 

175.11 

124.98 

150.00 
175.02 

124.99 

150.00 

175.01 

124.99 

150.00 

175.01 

125.00 

150.00 
175.00 

125.00 

150.00 
175.00 

As it was anticipated, the obtained solution is symmetric with respect to the axis 
passing through the center of the square and being parallel to the x-axis .  Table 4.1 
presents the computed values on the boundary and at the interior of the domain 
versus the number N of boundary elements. Comparing these results to the exact 
values, it is apparent that they converge rapidly and the computed boundary values 
of u and u,~ are very close to the exact ones. The accuracy at the internal points is 
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even better, being attributed to the fact that these values are computed from 
Eq. (4.11), which is a weighted residual form for all the boundary values. The re- 
suits have been obtained using the Microsoft Fortran PowerStation on a PC. The 
running time was a few seconds. Actually, the time required to solve the problem is 
the time needed to prepare the data file. For this reason, the user of LABECON is 
advised to write first a simple program that generates the coordinates XL, YL of 
the extreme points and XIN, YIN of the internal points, as well as the values of the 
INDEX vector and the boundary conditions. In this way, the tedious task of enter- 
ing data by hand and the ensuing possible errors are avoided. 

Example 4.2 

The scope of this example is to demonstrate the efficiency of program LABECON 
in treating domains with curvilinear boundaries. Specifically, we want to compute 
u for the following Neumann problem: 

V 2 u - O  in ~2 

OIL 
On 

= u-,, on F 

where the domain ~2 is the ellipse shown in Fig. 4.12 and 

2(b ~:~ - a~V ~ ) (a) 
u,, ~/b4r.e + a4Y 2 

The exact solution is known to be 

u - x2 _ y~ + C (b) 

Figure 4.12 Elliptic domain ~2 of Example 4.2. 
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Practically, the discretization of the boundary into elements of equal length is not a 
simple problem. Besides, such a discretization would not give the best results, 
since the curvature of the boundary is more intense in the neighborhood of point 
A (5.0, 0.0) and decreases moving towards point B (0.0, 3.0). A better discretiza- 
tion would have elements whose length is small near A and increases progres- 
sively towards B.  This discretization can be achieved by establishing the extreme 
points of the element from the parametric equations of the ellipse for constant 
increment A0 of the parameter. Namely, the coordinates are given as 

xi  = a cos 0~ , yi = b sin Oi (i = 1,2, . . . ,N) 

where N is the total number of boundary elements, and 

271 
0, = ( i - 1 ) A 0 ,  A 0 = - -  

N 

7 6 5 4 

8 . . . . .  3 

9,  "" "" ",2 

10 1 

1 2 ~  ,,,~ 9 !10 ""t* , j ' 1 9  

15 16 

Figure 4.13 Boundary element discretization and 
internal points of Example 4.2. 

For example, a discretization of the boundary into N - 20 elements (Fig. 4.13) 
produces the following lengths for elements 1 through 5 of the first quadrant 

gl = 0 . 9 5 8 ,  g2 =1 .097 ,  ga =1.289,  g4 =1 .457 ,  g5 =1.552 

and in each of the other three quadrants the elements have the same lengths due to 
the symmetry with respect to the x and y axes. 

The coordinates of the twelve internal points are computed similarly from the ex- 
pressions 

a b 
xi  - - - c o s 0 i  , y, - - s i n 0 i  ( i -  1,2,...,12) 

2 2 
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,71- ~') 

0, - ( i -  1 ) / x 0 ,  /x0 - 
12 

As it has already been mentioned, the preparation of  the data file by keying in the 
data, besides the risk of error, is a painful and time consuming process. Since 
LABECON is not a commercial computer code, it does not offer a pre-processing 
interface for automatic preparation of  the data. To facilitate this procedure and to 
reduce possible errors a FORTRAN program has been written that generates the 
required data and stores them in the INPUTFILE. The program has been named 
ELLIPSE-1 and its listing is shown below. 

C= 
C 

PROGRAM ELLIPSE1 

C 
C This program creates the INPUTFILE for LABECON when the 
C domain is an ellipse 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
CHARACTER* 15 INPUTFILE 
CHARACTER*80 NAME, TITLE 
PARAMETER (N- 20 ) 
PARAMETER (IN= 13 ) 
DIMENSION XL (N+I), YL (N+I), INDEX (N), XIN (IN), YIN (IN) 

WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*,' (A) ' ) INPUTFILE 
OPEN (i, FILE=INPUTFILE) 
WRITE (*,' (A) ') ' User NAME (max.15 characters) ' 
READ(*,' (A) ' )NAME 
WRITE (i,' (A) ' )NAME 
WRITE (*, ' (A) ') ' Program TITLE (max.15 characters) ' 
READ(*,' (A) ' )TITLE 
WRITE (i,' (A) ' )TITLE 

WRITE (I, i00) 
i00 FORMAT( ' ' ,79 ( ' ' ) ) 

a=5 . 
B=3. 
PI-ACOS (-i.) 
DTHETA= (2.*PI) /N 
DO 1 I=I,N 
THETA= ( I - 1 ) * DTHETA 
XL ( I ) =A'COS (THETA) 
YL (I) -B'SIN (THETA) 
WRITE (I, 200) XL (I), YL (I) 

200 FORMAT(2 (2X,FI4.7)) 
1 CONTINUE 

XL (N+I) =XL (I) 
YL (N+I) -YL (I) 
WRITE (1, I00) 

DO 2 I=I,N-I 
INDEX ( I ) = 1 
XM-(XL (I) +XL (I+l))/2. 
YM= (YL (I) +YL (I+l))/2. 
UNB=2. * ((B*XM) **2 - (A*YM) **2)/SQRT (B**2* (B*XM) *'2+A*'2" (A*YM) **2) 
WRITE ( i, 300 ) INDEX ( I ), UNB 
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2 
300 

CONTINUE 
FORMAT (2X, I4,2X, F14.7) 
INDEX (N) = 0 
XM= (XL (N) +XL (N+I))/2. 
YM= (YL (N) +YL (N+I))/2. 
UB=XM** 2 -YM**2 
WRITE (1,300) INDEX(N) ,UB 
WRITE (1,100) 

DA-A/2. 
DB--B/2. 
WRITE (i, i00) 

DTHETA= (2.*PI)/12. 
DO 3 III, 12 
THETA= ( I - 1 ) *DTHETA 
XIN ( I ) =DA*COS (THETA) 
YIN ( I ) =DB*SIN (THETA) 
WRITE (I, 200) XIN (I), YIN (I) 
CONTINUE 

XIN (IN) = 0. 
YIN (IN) =0. 
WRITE (1,200) XIN(IN),YIN(IN) 

STOP 
END 

C 
C 
:::::::::::::::::::::::::::::::::::::::::::::::::::: 

EXAMPLE 4.2 (DATA) 

J.T. KATSIKADELIS 
Example 4.2 

5.0000000 .0000000 
4.7552826 .9270510 
4.0450850 1.7633558 
2.9389263 2.4270510 
1.5450850 2.8531695 
.0000000 3.0000000 

-1.5450850 2.8531695 
-2.9389263 2.4270510 
-4.0450850 1.7633558 
-4.7552826 .9270510 
-5.0000000 .0000000 
-4.7552826 -.9270510 
-4.0450850 -1.7633558 
-2.9389263 -2.4270510 
-1.5450850 -2.8531695 

.0000000 -3.0000000 
1.5450850 -2.8531695 
2.9389263 -2.4270510 
4.0450850 -1.7633558 
4.7552826 -.9270510 

9.1955756 
4.9664676 
.0000000 

-3.7385842 
-5.6807458 
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-5.6807458 
-3.7385842 

.0000000 
4.9664676 
9.1955756 
9.1955756 
4.9664676 
.0000000 

-3.7385842 
-5.6807458 
-5.6807458 
-3.7385842 

.0000000 
4.9664676 

23.5765287 

2.5000000 .0000000 
2.1650635 .7500000 
1.2500000 1.2990381 
.0000000 1.5000000 

-1.2500000 1.2990381 
-2.1650635 .7500000 
-2.5000000 .0000000 
-2.1650635 -.7500000 
-1.2500000 -1.2990381 

.0000000 -1.5000000 
1.2500000 -1.2990381 
2.1650635 -.7500000 
.0000000 .0000000 

Referring to the Neumann problem of Example 4.2, the following should be taken 
into account, which are known from the theory of partial differential equations of 
the elliptic type [12]. 

(a) In order for the problem to have a solution, it must be 

f l  Ou ds - 0 
�9 0 7 t  

which can be readily proved by applying Eq. (2.16) for v - 1 and V2u - 0. 

(b) The solution u is not determined uniquely, but to the approximation of an ar- 
bitrary constant. 

The first remark demands the following check 

N 

i=1 

which can be shown that is satisfied for the give data. The second remark produces 
difficulties in solving Eq. (4.9). The matrix [A] = [HI is singular in this case and 
therefore, it can not be inverted. This difficulty can be overcome by prescribing 
arbitrarily the value of u at a node, say at the last node N ,  and then solving the 
problem with mixed boundary conditions. Without restriction of generality, we 
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assign to uN the exact value of u as it is computed from equation (b) with C - 0,  
so that the obtained numerical results can be directly compared with the exact ones. 

In Table 4.2, the computed values of u at internal points are presented for various 
values of N .  Moreover, Fig. 4.14 shows the variation of error in u at the internal 
point 2 versus the number of boundary elements N .  In this problem, the conver- 
gence is slower than in Example 4.1. This was anticipated, because the curved 
boundary of the ellipse is approximated by an inscribed polygon. A faster conver- 
gence can be achieved by employing another type of constant element which ap- 
proximates the geometry with a parabolic arc [13]. 

Table 4.2 Computed values of u at the internal points for various boundary 
discretizations of Example 4.2. 

Number of boundary elements, N 
Point Exact 

20 40 100 300 700 1000 

7.1022 

5.0959 

1.0736 
-0.9207 

6.5060 
4.4114 

0.2201 
1.8715 

6.2960 

4.1759 

-0.0646 
-2.1842 

6.2556 
4.1312 

-0.1177 
-2.2422 

6.2511 

4.1262 

-0.1236 
-2.2485 

6.2506 

4.1256 

-0.1243 
-2.2492 

6.2500 

4.1250 

-0.1250 
-2.2500 

13 1.2216 0.3514 0.0613 0.0073 0.0014 0.0007 0.0000 

0 

40 

20 / -  

0 

1 I l 
I I 

[ I 

I 

I 

200 

1 

400 600 800 1000 
N 

Figure 4.14 Variation of error in u at internal point 2 versus 
the number of boundary elements of Example 4.2. 
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4.7 Domains with multiple boundaries 

In many applications the domain ~2 may contain holes. In that case the contours 
are more than one (Fig. 4.15). Namely, there is an outer boundary enclosing a finite 
number of nonintersecting inner contours. In mathematical terms, this type of do- 
main is referred to as multiply connected domain. We come across these domains 
in many problems such as torsion of bars with hollow cross-sections, fluid flow 
past obstacles or heat conduction in pipes with thermal insulation. 

Figure 4.15 Multiply connected domain f~. 

It can be easily shown that Green's identity (2.16) is valid also for multiply con- 
nected domains, where the boundary 1-' is the sum (union) of all the contours. 
Indeed, if we introduce the cuts AB and CD, which are arbitrary and not neces- 
sarily along straight lines (see Fig. 4.16), the domain ~ is converted to simply 
connected, that is one without holes. Green's identity (2.16) may then be written as 

3 

�9 = 01~ ,  

OV 
On 

r e (  Ou Ov ds+ V - - - - u - -  
A On 01t 

015 
V ~  m 

On 
u - -  ds+ v u - -  

On c On On 
ds 

+ v 
On 

OV 
On 

ds 

ds 

Noting that 

L Ou 
V ~  

A (On 
Ov 
On d8 - - - L B  

Ou 
v - -  

On 
Ov,, )ds 
On 

f (ouv 
c On 

OV 
On 

d8 w - - L D  
Ou 

V ~  

On 
OV 
On 

ds 
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Figure 4.16 Positive direction and normal vector on the boundaries 
of a multiply connected domain. 

the foregoing equation becomes 

( v V 2  u - u V 2 v  ) df~ - v u -  ds  (4.48) 
On On 

where F = F ~ U F 2 U F 3 .  

Thus, Green's identity (2.16) applies also to multiply connected domains where the 
boundary integral is taken on all the contours. Consequently, relations resulting 
from Green's identity are valid for multiple boundaries as well. It should be noted 
that the positive sense on the inner contours is clockwise, which is opposite to that 
on the outer contours (Fig. 4.16). 

4.8 Program LABECONMU for domains 
with multiple boundaries 

The program LABECON can be readily modified to solve potential problems in 
domains with holes (multiply connected domains). The changes affect only the 
main program and the subroutines INPUT, GMATR, HMATR and UINTER. The 
new program has been given the name LABECONMU to distinguish it from 
LABECON. 

The structure of LABECONMU is the same as that of LABECON shown in the 
macro flow chart of Fig. 4.7. In its main program two new parameters have been 
introduced, NB that defines the number of boundaries, and the vector NL(1), which 
identifies the number of the last element on the I-th boundary (I=I,2,...,NB). It 
should also be noted that the elements of all the boundaries are numbered 
consecutively and therefore, N denotes the total number of elements. The listings 
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of the main program as well as of the subroutines INPUT, GMATR, HMATR and 
UINTER are presented below" 

C== 
C 

PROGRAM LABECONMU 
C 
C This program solves the two dimensional (LA)place equation 
C using the (B) oundary (E) lement method with (CON) stant 
C boundary elements for domains with (MU) Itiple boundaries 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER* 15 INPUTFILE, OUTPUTFILE 

C 
C Set the maximum dimensions 
C 

PARAMETER (N=24) 
PARAMETER (IN-8) 
PARAMETER (NB=2) 

C 
c N= Number of boundary elements which is equal to the number 
C of boundary nodes 
C IN= Number of internal points where the function u is calculated 
C NB= Number of boundaries of the multiple boundary domain 
C NLz Array with entries the number of the last element on each 
C boundary 
C 

DIMENSION INDEX (N), NL (NB) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N), G (N, N), H (N, N) 
DIMENSION UB (N) ,A(N,N) ,UNB (N) ,XIN(IN) ,YIN(IN) ,UIN(IN) 

C 
C Read the names and open the input and output files 
C 

WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*,' (A) ' ) INPUTFILE 
WRITE (*, ' (A) ') ' Name of the OUTPUTFILE (max.15 characters) ' 
READ (*, ' (A) ' ) OUTPUTFILE 
OPEN (UNIT=l, FILE-INPUTFILE) 
OPEN (UNIT=2, FILE-OUTPUTFILE) 

C 
C Read data from INPUTFILE 
C 

CALL INPUT (XL,YL,XIN, YIN, INDEX,UB,N, IN, NL,NB) 
C 
C Compute the G matrix 
C 

CALL GMATR (XL , YL , XM, YM, G, N, NL , NB) 
C 
C Compute the H matrix 
C 

CALL HMATR (XL,YL,XM,YM,H,N,NL,NB) 
C 
C Form the system of equations AX=B 
C 

CALL ABMATR (G,H,A,UNB,UB, INDEX,N) 
C 
C Solve the system of equations 
C 

CALL SOLVEQ (A, UNB, N, LSING) 

C 
C Form the vectors U and UN of all the boundary values 

C 
CALL REORDER (UB,UNB, INDEX,N) 
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C 
C Compute the values of U at the internal points 

C 
CALL UINTER (XL,YL,XIN, YIN, UB,UNB,UIN, N, IN, NL,NB) 

C 
C Print the results in the OUTPUTFILE 

C 
CALL OUTPUT (XM, YM, UB,UNB,XIN, YIN,UIN, N, IN) 

C 
C Close input and output files 

C 
CLOSE (I) 
CLOSE ( 2 ) 

STOP 
END 

C 
C 
C..==m..=B..=~= =- ===m=n= ==s~m~--===mm~ ~m==== s===mlm"~""~= =~ ~ = " ~  =""""" 

C 
SUBROUTINE INPUT (XL,YL,XIN, YIN, INDEX,UB,N, IN, NL,NB) 

C 
C This subroutine reads the input data from the input file 
C and writes them in the output file 

C 
IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER*80 NAME, TITLE 
DIMENSION XL (N+I), YL (N+I), XIN ( IN), YIN ( IN), INDEX (N), UB (N), NL (NB) 

WRITE (2, I00) 
i00 FORMAT(' ',69('*')) 

C 
C Read user' s name 
C 

READ(I,' (A) ' )NAME 

C 
WRITE (2,' (A) ' )NAME 

C 
C Read the title of the program 

C 
READ (I,' (A) ' )TITLE 

C 
WRITE (2, ' (A) ' ) TITLE 

C 
C Read the number of the last element on each boundary 

C 
READ(I,*) (NL (I), I-I,NB) 

WRITE (2 , 200 ) N, IN, NB 
200 FORMAT ( // ' BASIC PARAMETERS'//2X, 'NUMBER OF BOUNDARY ELEMENTS-' 

I,I3/2X, 'NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED 
i-' , I3//2X, 'NUMBER OF BOUNDARIES -' , I3) 

DO 250 I-I,NB 
250 WRITE (2,260) I,NL (I) 
260 FORMAT (2X, ' BOUNDARY' , I3,2X, ' LAST BOUNDARY ELEMENT- ' , I3) 

C 
C Read the coordinates XL,YL of the extreme points of the boundary elements 

C 
READ(I,*) (XL(I),YL(I),I-I,N) 

C 
C Write the coordinates in the output file 

C 
WRITE (2,300) 

300 FORMAT(//2X, 'COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ' 
i' ELEMENTS',//2X, 'POINT' ,9X, 'XL' ,15X, 'YL' ) 
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DO 20 I--I,N 
20 WRITE(2,400) I,XL(I),YL(I) 

400 FORMAT (2X, I3 , 2 (3X, El4.5) ) 
C 
C Read the boundary conditions and store them in UB(I). 
C If INDEX(I)=0, the value UB(I) is the prescribed value of u. 
C If INDEX(I)=1, the normal derivative un is prescribed. 
C 

READ(I,*) (INDEX(I) ,UB(I) ,I=I,N) 
C 
C Write the boundary conditions in the output file 
C 

WRITE (2,500) 
500 FORMAT (//2X, 'BOUNDARY CONDITIONS'//2X, 'NODE', 6X, ' INDEX', 

1 7X, ' PRESCRIBED VALUE' ) 
DO 30 I=I,N 

30 WRITE(2,600) I,INDEX(I),UB(I) 
600 FORMAT (2X, I3,9X, Ii, 8X, El4.5) 

Read the coordinates of the internal points 

READ(l,*) (XIN(I) ,YIN(I) , I=l, IN) 
RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE GMATR (XL,YL,XM, YM, G,N,NL,NB) 

C 
C This subroutine computes the elements of the G matrix 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION XL (N+I) ,YL (N+I) ,XM(N), YM(N) ,NL (NB) 
DIMENSION G (N, N) 

C 
C Compute the nodal coordinates and store them in the arrays XM 
C and YM 
C 

IF (NB. GT. 1) GOTO 5 
XL (NL (i) +I) --XL (i) 
YL (NL (I) +i) =YL (I) 

5 DO I0 I=I,N 
XM(I) = (XL (I) +XL (I+l))/2. 

I0 YM(I)=(YL(I)+YL(I+I) )/2. 
IF(NB.LE.1) GO TO 40 
XM(NL (i)) = (XL (NL (i)) +XL (i))/2. 
YM(NL (I)) = (YL (NL (I)) +YL (i)) /2. 
DO 15 K=2,NB 
XM(NL (K)) = (XL (NL (K)) +XL (NL (K-I) +I) )/2. 

15 YM(NL (K)) ~ (YL (NL (K)) +YL (NL (K-I) +i) )/2. 
C 
C Compute the elements of matrix G 
C 

40 DO 20 I=I,N 
X0 =XM ( I ) 
Y0=YM(I) 
DO 20 J=I,N 
XI=XL (J) 
YI=YL (J) 
X2=XL (J+l) 
Y2=YL (J+l) 
IF (NB. LE. l) GOTO 60 

IF(J.NE.NL(1) )GOTO 50 
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X2=XL (i) 
Y2 =YL ( 1 ) 
GOTO 60 

50 DO 30 K=2,NB 
IF (J.NE.NL (K)) GOTO 30 

X2=XL (NL (K- i) +i) 
Y2=YL (NL (K-I) +I) 
GOTO 60 

30 CONTINUE 
60 IF (I. NE. J) THEN 

CALL RLINTC (X0, Y0, X1, YI, X2, Y2, RESULT) 
G ( I, J) =RESULT 

ELSEIF ( I. EQ. J) THEN 
CALL SLINTC (XI, YI, X2, Y2, RESULT) 
G ( I, J) =RESULT 

ENDIF 
20 CONTINUE 

RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE HMATR (XL, YL, XM, YM, H, N, NL, NB) 

C 
C This subroutine computes the elements of the H matrix 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N), NL (NB) 
DIMENSION H (N, N) 

C 
PI=ACOS (-i. ) 

C 
C Compute the nodal coordinates and store them in the arrays XM 
C and YM 
C 

IF (NB. GT. I) GOTO 5 
XL (NL (I) +i) =XL (i) 
YL (NL (I) +i) =YL (I) 

C 
5 DO 10 I=l, N 

XM(I) = (XL (I) +XL (I+l))/2. 
I0 YM(I) z (YL(I) +YL(I+I) )/2. 

IF (NB. LE. I) GO TO 40 
XM(NL (i)) = (XL (NL (I)) +XL (i)) /2. 
YM(NL (I)) = (YL (NL (I)) +YL (I))/2. 
DO 15 K=2,NB 
XM (NL (K)) = (XL (NL (K)) +XL (NL (K-l) +I) )/2. 

15 YM(NL (K)) = (YL (NL (K)) +YL (NL (K-I) +I) )/2. 
C 
C Compute the elements of H matrix 
C 

40 DO 20 I=I,N 
X0 =XM ( I ) 
Y0=YM (I) 
DO 20 J=I,N 
XI=XL (J) 
YI=YL (J) 
X2=XL (J+l) 
Y2=YL (J+l) 
IF (NB. LE. 1 ) GOTO 60 

IF (J.NE.NL (1) )GOTO 50 
X2 =XL ( 1 ) 
Y2 =YL ( 1 ) 
GOTO 60 
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50 DO 30 K=2,NB 
IF (J.NE.NL (K)) GOTO 30 

X2=XL (NL (K-l) +i) 
Y2-YL (NL (K- i) +i) 
GOTO 60 

30 CONTINUE 
60 IF (I.NE. J) THEN 

CALL DALPHA (X0, Y0, XI, YI, X2, Y2, RESULT) 
H ( I, J) =RESULT 

ELSEIF (I. EQ. J) THEN 
H(I, J) =-0.5 

ENDIF 
20 CONTINUE 

RETURN 
END 

C 
SUBROUTINE UINTER (XL, YL, XIN, YIN, UB, UNB, UIN, N, IN, NL, NB) 

C 
C This subroutine computes the values of u at the internal points 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I), YL (N+I) ,XIN(IN) ,YIN(IN) ,UB (N) ,UNB (N), UIN(IN) 
DIMENSION NL (NB) 

C 
C Compute the values of u at the internal points 
C 

IF (NB. GT. i) GOTO 5 
XL (NL (I) +I) =XL (i) 
YL (NL (I) +I) =YL (i) 

5 DO i0 KK=I, IN 
UIN (KK) =0. 
DO 20 J=I,N 
X0=XIN (KK) 
Y0=YIN (KK) 
Xl=XL (J) 
YI=YL (J) 
X2 =XL (J+ I) 
Y2=YL (J+l) 
IF (NB. LE. I) GOTO 60 

IF (J.NE .NL (I)) GOTO 50 
X2 =XL ( 1 ) 
Y2 =YL ( 1 ) 
GOTO 60 

50 DO 30 K=2,NB 
IF (J. NE. NL (K)) GOTO 30 

X2=XL (NL (K- i) +i) 
Y2=YL (NL (K-l) +I) 
GOTO 60 

30 CONTINUE 
60 CALL DALPHA(X0,Y0,XI,YI,X2,Y2,RESH) 

CALL RLINTC (X0, Y0, X1, Y1, X2, Y2, RESG) 
20 UIN(KK) =UIN(KK) +RESH*UB (J) -RESG*UNB (J) 
10 CONTINUE 

RETURN 
END 

C 
C 
C-- 
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Example 4.3 

This example demonstrates program LABECONMU for the solution of a simple 
potential problem with mixed boundary conditions. The square domain f~ is dou- 
bly connected, namely it contains a hole. Its outer boundary has been discretized 
into 16 constant elements, while the inner one into 8 elements. The solution is 
sought at 8 internal points. The data and the boundary discretization are shown in 
Figs. 4.17 and 4.18. The data file has been created using program RECT-2.FOR. 

The exact solution is: u ( x ,  y )  = 100  (1 + z ) . 

Figure 4.17 Doubly connected domain ~ and boundary conditions. 
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16 
24 

.00000000 .00000000 

.25000000 .00000000 

.50000000 .00000000 

.75000000 .00000000 
1.00000000 .00000000 
1.00000000 .25000000 
1.00000000 .50000000 
1.00000000 .75000000 
1.00000000 1.00000000 
.75000000 1.00000000 

EXAMPLE 4.3 (DATA) 
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Figure 4.18 Boundary element discretization for the 
doubly connected domain of Example 4.3. 
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.15000000 .15000000 

.50000000 .15000000 

.85000000 .15000000 

.15000000 .50000000 

.85000000 .50000000 

.15000000 .85000000 

.50000000 .85000000 

.85000000 .85000000 

EXAMPLE 4.3 (RESULTS) 

********************************************************************* 

J.T. KATSIKADELIS 
Example 4.3 

BASIC PARAMETERS 

NUMBER OF BOUNDARY ELEMENTS= 24 
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 

NUMBER OF BOUNDARIES = 2 
BOUNDARY 1 LAST BOUNDARY ELEMENT= 16 
BOUNDARY 2 LAST BOUNDARY ELEMENT= 24 

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS 

POINT XL YL 
i .00000E+00 .00000E+00 
2 .25000E+00 .00000E+00 
3 .50000E§ .00000E+00 
4 .75000E+00 .00000E+00 
5 .10000E§ .00000E§ 
6 .10000E+01 .25000E§ 
7 .10000E+01 .50000E+00 
8 .10000E+01 .75000E§ 
9 .10000E+01 .10000E+01 

I0 .75000E+00 .10000E§ 
II .50000E+00 .10000E+01 
12 .25000E+00 .10000E+01 
13 .00000E+00 .10000E+01 
14 .00000E+00 .75000E+00 
15 .00000E+00 .50000E+00 
16 .00000E+00 .25000E+00 
17 .30000E+00 .30000E+00 
18 .30000E+00 .50000E§ 
19 .30000E§ .70000E+00 
20 .50000E+00 .70000E+00 
21 .70000E+00 .70000E+00 
22 .70000E+00 .50000E+00 
23 .70000E+00 .30000E+00 
24 .50000E+00 .30000E+00 

BOUNDARY CONDITIONS 

NODE INDEX PRESCRIBED VALUE 
1 1 .00000E§ 
2 1 .00000E+00 
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3 1 .00000E+00 
4 1 .00000E+00 
5 0 .20000E+03 
6 0 .20000E+03 
7 0 .20000E+03 
8 0 .20000E+03 
9 1 .00000E+00 

i0 1 .00000E+00 
ii 1 .00000E+00 
12 1 .00000E+00 
13 0 .10000E+03 
14 0 .10000E+03 
15 0 .10000E+03 
16 0 .10000E+03 
17 0 .13000E+03 
18 0 .13000E+03 
19 1 .00000E+00 
20 1 .00000E+00 
21 1 -.10000E+03 
22 1 -.10000E+03 
23 1 .00000E+00 
24 1 .00000E+00 

The system has been solved regularly 

RESULTS 

BOUNDARY NODES 

X Y U Un 

.12500E+00 .00000E+00 .I1212E+03 .00000E+00 

.37500E+00 .00000E+00 .13776E+03 .00000E+00 

.62500E+00 .00000E+00 .16273E+03 .00000E+00 

.87500E+00 .00000E+00 .18811E+03 .00000E§ 

.10000E+01 .12500E+00 .20000E+03 .I0536E+03 

.10000E+01 .37500E+00 .20000E+03 .95220E+02 

.10000E+01 .62500E+00 .20000E+03 .95220E+02 

.10000E+01 .87500E+00 .20000E+03 .I0536E+03 

.87500E+00 .10000E+01 .18811E§ .00000E+00 

.62500E+00 .10000E+01 .16273E+03 .00000E+00 

.37500E+00 .10000E+01 .13776E+03 .00000E+00 

.12500E+00 .10000E+01 .I1212E+03 .00000E+00 

.00000E+00 .87500E+00 .10000E+03 -.I0777E+03 

.00000E+00 .62500E+00 .10000E+03 -.99560E+02 

.00000E§ .37500E+00 .10000E+03 -.99560E+02 

.00000E+00 .12500E+00 .10000E+03 -.I0777E+03 

.30000E+00 .40000E+00 .13000E+03 .I0833E+03 

.30000E+00 .60000E+00 .13000E+03 .I0833E+03 

.40000E+00 .70000E+00 .14054E+03 .00000E+00 

.60000E+00 .70000E+00 .16002E§ .00000E+00 

.70000E+00 .60000E+00 .17168E+03 -.10000E+03 

.70000E+00 .40000E+00 .17168E+03 -.10000E+03 

.60000E+00 .30000E+00 .16002E+03 .00000E+00 

.40000E+00 .30000E+00 .14054E+03 .00000E+00 

INTERNAL POINTS 
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X Y SOLUTION U 

.15000E+00 .15000E+00 .I1508E+03 

.50000E+00 .15000E+00 .15026E+03 

.85000E+00 .15000E+00 .18525E+03 

.15000E+00 .50000E+00 .I1507E+03 

.85000E+00 .50000E+00 .18569E+03 

.15000E+00 .85000E+00 .I1508E+03 

.50000E+00 .85000E§ .15026E+03 

.85000E+00 .85000E+00 .18525E+03 

4.9 The method ofsubdomains  

In certain problems the material properties of the body are piecewise continuous. 
Such, for example, is the torsion of a composite bar consisting of two or more 
materials of different shear moduli. Another example is the problem of heat con- 
duction in a body having different coefficients of thermal conductivity in two or 
more subregions. In the literature such a body is referred to as multi-zone body and 
the domain it occupies a composite domain. 

Potential problems in composite domains can be solved by applying the BEM sepa- 
rately to each of its subdomains. The reason is that the fundamental solution is 
valid only for homogeneous domains. Next, without restricting the generality, we 
will apply the BEM to the composite domain of Fig. 4.19, which consists of the 
three subdomains f~l, ~'22 and f2:~. In discretizing the boundaries of these subdo- 
mains, special care is taken to have the same discretization on either side of each 
interface, namely, on common parts of the boundaries between subdomains (see 
Fig. 4.20). 

Figure 4.19 Composite domain f2 - ~1 U Q2 U ~:3. 
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Figure 4.20 Boundary element discretization of composite domain 
( F - F~ U F2 U P:~ ). Subdomains and interfaces. 

In each subdomain the following vectors are defined: 

Subdomain ~ l 

{u}l~, {n,, }~ Nodal values on part F~ of the external boundary 

{,L}~2, {,u,, }~2 Nodal values on the interface P~2 

{u}~:~, {u,, }I:~ Nodal values on the interface FI:~ 

In the foregoing notation, the superscript denotes the subdomain, while the 
subscript denotes the neighboring subdomains or the corresponding interface. 
The number of the nodal points on 1-'1, I-'~2 and 1-'1:~ are N~, N~2 and N~:~, 
respectively. 

Subdomain ~2 

{u}.~, {u,}.~ Nodal values on part 1-'2 of the external boundary 

{u}~2, {u,,}~2 Nodal values on the interface F12 

{u}~:~, {u,~}~3 Nodal values on the interface V23 

The number of the nodal points on 1-'2, F12 and F2:~ are denoted by N2, N12 
and N23, respectively. 

Subdomain ~:~ 

{u} a , {un}~ Nodal values on part 1-'3 of the external boundary 
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{U}33, {Un}33 
{U}33, {Un}323 

Nodal values on the interface 1'13 

Nodal values on the interface 1'23 

The number of the nodal points on F3, 1-'13 and 1-'23 are N3, N13 and N23, 
respectively. 

The boundary conditions are specified only on the external boundary F of f2, that 
is only on the parts F1, F2, F3 (F = F1 t2 F2 t._J F3). Both quantities u and un are 
unknown on either side of the interfaces F12, F13, F23. Therefore, the total num- 
ber of boundary unknowns in each subdomain is: 

Subdomain ~"~1: 

Subdomain f~2 : 

N1 on F1, 2N12 on 1-'12, 2N13 on 1,13, 
total N~ + 2N12 -+- 2N13 

N2 on F2, 2N12 on F12, 2N23 on 1-'23, 
total N2 + 2N12 -+- 2N23 

Subdomain f23: N3 on F:~, 2N13 on F13, 2N23 on F23, 
total N:~ + 2N~:~ + 2N23 

The available, however, equations for the evaluation of the unknown boundary 
quantities are: 

from subdomain f2~: N~ + N~2 + N~:~ 

from subdomain f~2:N2 -4- N~2 + N23 

from subdomain f~:~: N3 + NI:~ + N23 

Therefore, the number of unknowns exceeds the number of available equations by 
2(N~2 + N~:~ + N2:~). The additional equations result from physical considerations, 
which are the so-called continuitv conditions at the interfaces. These conditions ex- 
press: 

(a) Continuity of  the potential. The values of the potential on each side of the in- 
terface separating two subdomains are equal, 

(4.49) 

(b) Continuity oftheflux. The flux qn is a quantity related to the physical problem 
described by the potential equation. For example, in heat conduction problems 
the flux is given by Fourier's law q, = ku,~, where k is the coefficient of 
thermal conductivity of the material. For the torsion problem the expression for 
the flux is more complicated. The outcoming flux from one subdomain is equal 
to the incoming flux in the adjacent subdomain. Thus, if q, denotes the flux 
along the normal to the interface, its continuity across the interface requires 



Chapter 4 Numerical Implementation of the BEM 99 

( q . } , ~  - - { q . } l ~  

{qn}33 = --{qr,}~3 

{qn}33 -- --{qn}23 

(4.50) 

The minus sign in the right hand side of Eqs. (4.50) is explained by the fact that the 
positive direction for the flux coincides with the outward normal vector n .  This 
means that the two flux vectors at the common interface of adjacent subdomains 
are of opposite directions, because their corresponding normal vectors are opposite 
too (Fig. 4.20). Generally, the formulation of the continuity condition for the flux 
requires familiarity with the physical problem under consideration. For this reason, 
the above concepts will become more clear after studying Chapter 6. 

Let us apply the flux continuity conditions to the heat flow problem. If the coeffi- 
cients of thermal conductivity in the subdomains f~l, $22 and f~:~ are denoted by 
kl, k2 and k:~, respectively, then Eqs. (4.50) may be written as 

{~,, }f,. - - [k,~ ] {,,,, }I~ 

{u,, } ~:~ - - [ k  li~ ]{ U,, }I;} (4.51) 

where [k,2], [k,:~], [k~:~] are square diagonal matrices with elements /,:~2--k,/k2, 
k13 = kl/k: l  and k2:~ = k.2/k:~, respectively. 

Equations (4.49) and (4.51) provide now the required 2(N12 -k- NI:~ + N2:~) addi- 
tional equations for establishing all the unknowns of the problem. 

On the basis of the foregoing, the matrix equations for the boundary of each subdo- 
main become: 

(i) For the boundary of subdomain ~l 

[ H ] '  { u }  1 : [C] 1 {'a,, }1 

or  

[[H]ll [H]',~ [H]I,.~-] 
1 

13 

-[[c]', 
{u,,}~ 

{u,,}112 

The boundary conditions on part F~ of the external boundary influence only the 
first term in each side of the above equation. Incorporating these conditions, we get 
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[[A]~ [H]~ [HI1:,] 
{~}~ 
{~}~ G 1 { {Un}]2 ] (4.52) 

-- { B } I  n L [[G]I2 [ ]13] {t/,n}13 

The vector {x}11 contains all the unknown boundary quantities of 1'1. The matrix 
[A]~ and the vector {B}~ are derived using the same procedure as for the case of 
Eq. (4.9). 

(ii) For the boundary of subdomain f22 

[H]2{u} 2 - [G ]2 {u , , }  2 

or 

[[n]~ [H]f,. [n]~:, ] 
{~}~ 

Using the continuity conditions (4.49) and (4.51), the above equation yields 

{,,}~ {'/Zn } 2 2 

{U,,} 1 

2:1 

Subsequently, applying the boundary conditions from part F2 of the external 
boundary, we arrive at 

{~}~ 
- {B}~ + [-[c]~,. [k,~] (4.53) 

(iii) For the boundary of subdomain 9:~ 

[H]:'{~}:' -[C]~{,,,,} ~ 
or 

[[H]] [H]e:, [H]~:,] 
{~}i', 

-[[G]I', Iol :, {u~}33 
{un}~:, 
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and using again the continuity conditions (4.49) and (4.51), the above equation 
takes the form 

[[H] 3 [H]~3 [Hl~a] - [G  a [ ]3 --[6~]33 [k13] [G133 [k23]] 

{u.}~ 
{un}{3 

{Un }23 

Finally, incorporating the boundary conditions for part F3 of the external bound- 
ary, the last equation gives 

[[A]~ [H]a13 [H]~a] 

{x}~, 
{u}l~ 
{u}~:, 

(4.54) 

Equations (4.52), (4.53) and (4.54) of the three subdomains may then be combined 
in a single matrix equation as 

[A]{X} = {B} (4.55) 

where 

{X}: Vector consisting of all the unknown values on the external boundary and 
on the interfaces. Its dimension is: 
N = N1 + N2 q- Na + 2N12 + 2Nl:~ + 2N2a 

[A]: Known square coefficient matrix of dimensions N • N 

{B}: Known vector of dimension N 

The vectors {X}, {B} and the matrix [A] are defined by the equations 

{X} = 

{*}I 

{~}I: 
{u}{: 
{u}~: 

{B} = 

{B} 
{B} 
{B} 

(4.56) 
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[A] = 

[A]~ [0] [0] [H]~2 [H]]3 [0] -[G]~2 

[01 [m]~ [01 [U]~2 [0] [H]2 a 
3 

[0] [0] [A] a [0] [H]a3 [H123 [01 

G 1 -[  ]13 [0] 
G 2 [0] -[  ]23 

' 3 G 3  [e] 3[kl ] [ 
(4.57) 

We notice that matrix [A] is not fully populated. Its structure, therefore, allows the 
use of special techniques for the solution of Eq. (4.55), which reduce running time 
and disk space requirements. The method of subdomains may also be employed for 
long and slender homogeneous domains to overcome numerical problems associ- 
ated with the integration of the fundamental solution over long distances. By split- 
ting the domain into two or more subdomains (see Fig. 4.21), the aspect ratio of 
each subdomain is reduced, and the influence matrices [H] and [G] are computed 
more accurately. 

Figure 4.21 Long and slender homogeneous domain 
divided in three subdomains. 
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Problems 

4.1. Write in FORTRAN a subroutine that computes the derivatives u,x and u,v 
at internal points P c f2. 

4.2. Modify appropriately the program LABECON so that it can be used to solve 
the anisotropic problem. 

4.3. For the composite domain of the following figure and the indicated discre- 
tization, compute the matrix [A] and the vector {B} of Eq. (4.55). 

Figure P4.3 



Chapter 5 

Boundary Element 
Technology 

5.1 Introduction 

In the previous chapter, the boundary value problem described by the Poisson's 
differential equation (3.6a) and the boundary condition (3.6b) was modeled nu- 
merically by the BEM. This formulation originated from the discretization of the 
boundary integral equation (Eq. 3.37) and resulted in the system of linear algebraic 
equations (4.9), which approximates the solution of the integral equation. The ac- 
curacy of the approximation and the efficiency of the BEM depends on the bound- 
ary discretization technique (i.e., the type of employed element), and on the method 
used for the integration of the kernel functions over the elements. 

The constant element was presented in Chapter 4. This element approximates the 
actual geometry by a straight line, while the unknown boundary quantity is as- 
sumed to be constant on the element, resulting in a discontinuous distribution on 
the boundary. A better approximation of the boundary quantity can be achieved by 
adopting linear variation over the element. Even the linear clement is not an ideal 
one as it can not approximate accurately a curved boundary. For this reason, higher 
order elements have been developed, namely, elements that approximate both the 
boundary geometry and the boundary quantities by higher order interpolation poly- 
nomials~usually of second or third degree. Evidently, these elements model more 
accurately the curved boundaries and the distribution of the boundary quantities on 
the element. However, they have the weak point that the functions being integrated 
over each element become more complicated and the computer time is considera- 
bly increased. 

Generally, the boundary elements may be classified in the following three catego- 
ries [1 ]: 

(a) Subparametric elements. The polynomial approximating the geometry of the 
boundary is of a lower degree than that approximating the variation of the 
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boundary quantity, e.g. the element is a straight line, whereas the boundary 
quantity varies parabolically. 

(b) lsoparametric elements. The geometry and the boundary quantity are ap- 
proximated by the same degree polynomials, e.g. the linear and the parabolic 
elements defined in Chapter 4 are isoparametric. 

(c) Superparametric elements. The geometry is approximated by a higher degree 
polynomial than that approximating the boundary quantity, e.g. the element 
modeled by a parabolic arc, whereas the boundary quantity is constant or 
varies linearly on it. 

(b) Discontinuous element 

Figure 5.1 Continuous and discontinuous linear elements. 

The use of the subparametric and superparametric elements is quite limited. Sub- 
parametric elements, however, result inevitably as a degenerate case of parabolic 
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elements for rectilinear boundaries. Superparametric elements, in which the bound- 
ary geometry is modeled by a parabolic arc and the boundary quantity is constant, 
have been introduced and widely used by Katsikadelis and his co-workers [2-6]. 
This element has the advantages of the constant element regarding the simplicity of 
the assembly procedure for the influence matrices, whereas it approximates the 
curvilinear boundary with great accuracy. In general, the isoparametric elements 
are the most widely used elements, especially in commercial BEM codes. 

The boundary elements are also distinguished in continuous and discontinuous. 
Continuous elements have nodes at their extreme points, and therefore they share 
nodes with the adjacent elements, while discontinuous elements have nodes located 
away from the extreme points. In the sections that follow, we will discuss the linear 
and the parabolic elements for continuous and discontinuous modeling. 

5.2 Linear elements 

As it was mentioned before, linear elements approximate the geometry of the 
boundary by straight lines and the boundary quantity by a linear function on each 
element. In order to establish the expression for the variation of the boundary 
quantity over an element, its values at two nodal points are required. For this pur- 
pose, it is convenient to introduce a local coordinate system Ox~?/ on each ele- 
ment, where - e / 2  <_ ~:~ _< ( / 2 ,  ~ being the length of the element. For continuous 
elements the nodal points are placed at the extreme points (Fig. 5. l a), whereas for 
discontinuous elements at points between the end points (Fig. 5. l b). 

Figure 5.2 Elliptic boundary modeled by 12 continuous elements. 
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Figure 5.2 shows the discretization of an elliptic boundary into 12 continuous lin- 
ear elements, whereas Fig. 5.3 shows the discretization of the same boundary into 
12 discontinuous linear elements. From these two figures, it becomes evident that 
the discretization of the boundary using discontinuous elements requires twice as 
many nodes compared to the continuous elements. However, a better approxima- 
tion is achieved by employing the discontinuous elements (see Fig. 5.4). Anyhow, 
the advantage of the discontinuous element is not the improved accuracy as com- 
pared to the continuous element, but rather its capability to overcome compu- 
tational problems arising at points where the boundary quantity is discontinuous, 
e.g. the normal derivative at corner points. Hybrid or continuous-discontinuous 
elements have also been invented, that is, elements having only one of the nodes 
placed at an extreme point. 

'u, exac 

Figure 5.3 Elliptic boundary modeled by 12 discontinuous elements. 

Let us consider the j - t h  element of the discretized boundary having end points j 
and j + 1, and length ( j  (Fig. 5.5). In the local system of axes 01x~y ~ its geome- 
try is described by the equations 

! t 
X --X (-g ;/2 < :,;' ___ e ;/2) 

t y - 0  

whereas in the global system of axes Oxy by the equations 
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(a) Continuous elements 
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u(x), exact 

�9 , q w  ' q w  , q w  , q w  I v  v 

(b) Discontinuous elements 

Figure 5.4 Approximation of the exact function u(x) by 
linear continuous and discontinuous elements. 
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yl 
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j - element 
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X 

Figure 5.5 Global (Oxy) and local (O'x'y') systems of axes 
for the j - t h  element. 
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X Xj+I  + Xj  Xj+ 1 - -  Xj  , 
- + x ( 5 . 1 a )  

2 gj 

Y _ Yj+I q- Yj -k Yj+I -- Yj x'  (5. lb) 
2 gj 

Recall that the positive direction of x' on the element is from point j towards 
point j + 1, since the nodes and extreme points of the discretized boundary are 
numbered in the counter-clockwise sense. The interval I - g  j/2, gr is normalized 
by setting 

I 
X 

s c - (5.2) 
ej/2 

and then Eqs. (5.1) become 

Xj+I  .qt_ Xj  Xj+ 1 --  :T,j 
z - + ~ (5.3a) 

2 2 

y - YJ+~ + Y; + YJ+~ - Y J  ~ (5.3b) 
2 2 

where - 1  _< { _< 1. 

Equations (5.3) may be rewritten as 

+ 1 
x ( { ) - 2  7(1 + ~) xs+~ 

2 
(5.4a) 

1 ( 1_  ~)yj + 1 (1 + {)Ys+I (5.4b) 

The variation of the boundary quantity u (or un - O u / O n )  is linear on the ele- 
ment. Hence, its distribution in the local system of axes is given by the expression 

/ / , j+l  ~ ? / , j  ?s __  ,Us / 
u - -  + x 

2 g,; 

o r  

u -  + 
2 2 

o r  

1 ( 1 -  sC)u' 1(1 + {)uJ+' (5.5) 
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Using local numbering for the nodes where j and j + 1 are renamed to 1 and 2, 
respectively, Eqs. (5.4a), (5.4b) and (5.5) may all be expressed through the follow- 
ing general equation 

f(~) -- r  fl -q- ff)2(~)A (5.6) 

where j~ and f2 are the values of the function f ( x )  at the nodes 1 and 2, and f ( ( )  
represents any of the functions x(() ,  y( ( ) ,  u(~) or un(~). The functions ~1(~) 
and ~2 (() are given as 

1 
r  -- - (1  - ~) (5.7a) 

2 

1 (1 + ~) (5.7b) 
2 

and they express the influence of the nodal values f j  and fj+l on the expression of 
f(~) for the linear element. They are the functions of the linear interpolation and 
they are referred to as l inear  shape  func t ions .  From the above, one readily con- 
cludes that the linear element is isoparametric. 

5.3 The BEM with linear boundary elements 

In this section, we will present the BEM for the potential equation using continuous 
linear elements. The number of the elements is equal to the number of nodes. The 
actual boundary is, thus, modeled by an inscribed polygon with the nodes placed at 
comer points. 

In the case of constant elements, the substitute boundary which models the actual 
one, is always smooth at the nodes and, therefore, the integral equation (3.29) is 
employed. In the case of linear elements, however, the nodes lie at the comers of 
the polygon and, consequently, the integral equation (3.28) should be applied in- 
stead with c~ = c~ i , where c~ i is the angle between the elements ( i -  1) and i 
(Fig. 5.6). Thus, after discretizing the boundary into N linear elements, Eq. (3.28) 
becomes 

N N 
e i u i "J vu,~ ds + "J 

where e~=  c~/27r and v,, = Or~On denotes the derivative of the fundamental 
solution in the normal to the boundary direction. 

We examine now the integrals over the j - t h  element. Using the linear approxima- 
tion of Eq. (5.6) for the boundary quantities u and un, the line integral appearing 
in the first sum of Eq. (5.8) may be written as 
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u j+2 or u j+2 _ _ . . . , - - - ~ U [ - - ' - , ~ ~ ,  uj+I or u j+l 

/ u j or Un ~ 

a i 

i - n o d e  ~ ( i + l ) - n o d e  
x 

(i + 1 ) - element 

Figure 5.6 Modeling of the boundary with continuous linear elements. 

,#,f, ej ~f, ej 

where 

~Jf' - v ~ / ~ , ( ~ ) d ~  

- -  v r  

and 

1 
27r 

(5.9) 

(5.10a) 

(5.10b) 

(5.11) 

(5.12) 
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It should be made clear that the superscript i in the symbols 9~ j and 9~ j , indicates 
the i - t h  node (pz) where the source is applied, while the superscript j indicates 
the element over which the integration is carried out. Finally, the subscripts 1 and 2 
denote in local numbering the points j and ( j  + 1),  respectively. 

In a similar fashion," the line integral appearing in the second sum of Eq. (5.8) may 
be written as 

f r  vnuds - h : J u  ~ + h~Ju 2 
J 

(5.13) 

where 

Cj 1 
(5.14a) 

~j  1 
(5.14b) 

and 

Vn -- 
Ov 1 cosr 

= (5.15) 
On 27r 7" 

Substituting Eqs. (5.9) and (5.13) back into Eq. (5.8), the latter yields 

N N 

~=l j = l  
(5.16) 

where 

[ h~ ") -71- h2 "j-1 for j - 2, 3,..., N 
(5.17) 

,qll + (.]~N for  j - 1 

Go - -  i,j-1 
gl ) + 92 for j -  2, 3,..., N 

(5.18) 

Equation (5.16) may be written in matrix form as 

[H]{u} - [ G ] { u . }  (5.19) 

in which it has been set 

[H]-  + (5.20) 

[c] is a diagonal matrix with elements the coefficients c ~ . 
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Corner points and points of change in boundary conditions 

In formulating Eq. (5.19), it was assumed that the quantities u and un = Ou/On 
had a unique value. However, this is not always the case. For example, un is not 
continuous at the comer points, since its value is generally different before and 
after the comer. Likewise, in mixed boundary conditions different values are pre- 
scribed at nodal points, where the boundary conditions change type. At comer 
points, we may distinguish the following cases for the boundary conditions [7]: 

(a) Known: u,~ before and after the comer 
Unknown: u at the comer 

(b) Known: u at the comer and u,~ before the comer 
Unknown: u,~ after the comer 

(c) Known: u at the comer and u,~ after the comer 
Unknown: un before the comer 

(d) Known: u at the comer 
Unknown: u,, before and after the corner 

In all the above cases, u is assumed to be continuous at the comer points, having 
therefore a unique value at these points. The terms before and after refer to the 
value of the quantity just before or right after the corner point according to the 
positive sense on the boundary (see Section 4.7). 

The unknown boundary quantities are determined under the assumption that u,, 
may be discontinuous at all nodal points, which means that we are dealing with 
2N values of u,,. With this in mind, we can write Eq. (5.19) as 

[ t t ] {u}  - [G*]{'u,; } (5 .21)  

where {u~ } is a vector containing the 2N values of the normal derivative (two at 
each node) and [G*] is a N • 2N matrix whose elements are defined as 

Gi,2r = 91 
( j -  1,2,..., N)  (5.22) 

For the first three cases of the comer boundary conditions--cases (a), (b) and (c) - -  
only one boundary quantity is unknown. Therefore, rearranging the unknowns on 
the basis of the boundary conditions, Eq. (5.21) produces a system of N linear 
equations, which can be solved for the N unknown boundary quantities. The un- 
knowns are rearranged by examining all the nodes. If the value of u is unknown at 
a node, then the respective column remains at the left-hand side of Eq. (5.21), oth- 
erwise this column is multiplied by the known value of u ,  its sign is switched and 
is shifted to the right-hand side of the equation. Similarly, if the value of un is un- 
known, then the respective column of [G*] is shifted with opposite sign to the left- 
hand side of the equation. The two consecutive columns corresponding to u,, are 
added together, if the node is not a comer point of the actual boundary. After com- 
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pleting this process, the right-hand side of the equation contains only known quan- 
tities and, thus, the matrix multiplication results in a single vector. Comer points 
may also be treated using one-sided discontinuous elements before and after the 
comer (Fig. 5.7). Thus, two separate nodes appear in the equations at which two 
different values of un are computed. 

It should be noted that an abrupt change in the boundary's slope (especially reen- 
trant comers) or a change in the type of boundary conditions causes a local singu- 
larity in the behavior of the solution, which may even "pollute" the numerical 
results over the whole domain. A remedy to this problem is the refinement of the 
elements near the point of singularity. Nevertheless, this technique is not always 
successful in giving a reliable solution, especially for its derivative, and recourse to 
special techniques is unavoidable [8]. 

u~-) 

f J /J /J // // // //m// ~ /  

) 

Figure 5.7 Discontinuous elements adjacent to a comer (un = Ou/On ). 

5.4 Evaluation of line integrals on linear elements  

The matrices [G] and [lt] appearing in Eq. (5.19) require the computation of the 
line integrals (5.10) and (5.14) whose integrands are products of the fundamental 
solution v or its normal derivative v,~ = OrlOn and the linear shape functions 
~1(~) and ~2(~). The integrations are carried out over the interval [ -1 ,+1 ] .  Two 
cases are considered for the linear elements as it was done for the constant ele- 
ments. These cases are dictated by the behavior of the functions (5.11) and (5.15). 
Specifically, when the j - t h  element, over which the integration is performed, does 
not contain the source point i ,  i.e. i :x: j ,  then it is always r ~ 0 and the integral 
is regular. On the other hand, when the source point lies on the j - t h  element, i.e. 
i = j ,  then the distance r takes also the value r = 0 and the behavior of the 
integral is singular. The integration for the first case (i ~: j )  will be referred to as 
outside integration, whereas for the second case (i -- j )  as inside integration. 
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5.4.1 Outside integration 

The integrals (5.10) and (5.14) may be evaluated analytically using symbolic lan- 
guages (e.g. MAPLE). This process, however, yields very lengthy expressions, 
which in some cases may cover several pages, making them computationally im- 
practical. A very practical and accurate approach is the numerical integration. Any 
integration rule may be utilized for this purpose, e.g. trapezoidal rule, Simpson's 
rule or Newton-Cotes integration formulae. But, the most suitable method for the 
numerical evaluation of BEM integrals is the Gaussian quadrature (see Appen- 
dix B). This method approximates the integral with great accuracy using the least 
number of values of the integrand. The numerical integration should not be per- 
formed "blindly". The accuracy depends not only on the number of integration 
points, but also on how the integrand varies within the integration interval. A 
smooth variation of the integrand gives more accurate results. Therefore, the inte- 
gration process requires a thoughtful consideration and special care is required 
when the integrand exhibits intense changes. In integrals (5.10) and (5.14), the 
shape functions vary smoothly and consequently, the behavior of the integrand is 
dominated by the functions ~nr and 1 / r .  

Figure 5.8 Points A, /3 and C where the source is applied. 

In order to have a better insight into the variation of the integrand, we consider the 
domain of Fig. 5.8 and examine the function 9(~) = ~1(~) gnr on the element with 
extreme points (4, 4) and (3, 4). Three locations for the source are considered: 

(i) location A relatively far from the element, 

(ii) location /3 at a relatively moderate distance from the element, and 
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(iii) location C relatively close to the element. 

For the particular element, the transform equations (5.4a) and (5.4b) become 

x(() - [�89 ()]4 + [�89 + ()]3 - 3 . 5 -  0.5(  

y(() - [ � 8 9  ()]4 + [�89 ()]4 - 4 

and according to Eq. (5.12), the relative distance from the source point is 

~(~) - J[ x ( ( ) -  ~, ]~- + [ y ( ( ) -  y, ]~- 

where xi and y, are the global coordinates of the source point. 

2.0 ~ J J 1 

1.6 ~ 
1 . 2 _  .... ~ ..... 

0.4 ~ _ -  .... 

o.o ; , 
9 ~ - 

- 0 g B ( ~ )  ~ 
-1 ~ - -  

-2 - /  ~ -q~(~) ,.,,- 
i 

- 2  1 1 1 i 

-1.0 -0.5 0.0 0.5 1.0 

Figure 5.9 Behavior of the integrand g(() - ~1(() gnr for 
different locations of the source. 

The behavior of the integrand associated with points A, B and C is illustrated 
graphically through the plots of 9(~) depicted in Figure 5.9. It should be noticed 
that the variation of the function g(~) is quite different when the source is located 
close to the element over which the integration is performed. Therefore, an effi- 
cient programming of BEM should take into account such a behavior by using 
Gaussian quadratures with variable number of integration points (i.e., increasing 
number of points as the source is getting closer to the element). The number of in- 
tegration points should be chosen in a way to ensure sufficient accuracy. An un- 
necessarily, however, large number of integration points should be avoided, in 
order to keep the computation cost low. 
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5 .4 .2  I n s i d e  i n t e g r a t i o n  

In this case the source lies on tlae element over which the integration is performed. 
As the integration point runs along the whole element, it will coincide inevitably 
with the source point. There, the distance r vanishes and the integrands of 
Eqs. (5.10) and (5.14) exhibit a singular behavior, because the factors gnr and 
c o s r  become infinite for r = 0 (see Eqs. (5.11) and (5.15)). These integrals 
are known as singular integrals. Their value exists and is determined through spe- 
cial integration techniques, either analytical or numerical. Even an indirect method 
has been invented to circumvent the evaluation of the singular integrals by 
computing directly the singular coefficients H,  and Gii (see Section 5.4.3). In the 
sequel, we will first study the integrals with logarithmic singularity, and then those 
with Cauchy type singularity ( 1/r ). 

5.4.2.1 Integrals with logarithmic singularity 

(a) Analytical integration 

We consider the general case of the discontinuous linear element shown in 
Fig. 5.10. The continuous element results as a special case, when the nodes are 
shifted to the extreme points. The two nodes of the linear element are assigned lo- 
cally the numbers 1 and 2, and their global coordinates are denoted by (Xl, Yl) and 
(x2,y2). Using this notation, it can be easily proved that the coordinate transforma- 
tion from the local to the global system is expressed by the equations 

X ( ~ )  - -  ~ lX2  -t- h;2X 1 -t- z2  - -  x l  ~ ( 5 . 2 3 a )  

y(~)  _ tqy2 + g2Y~ + Y2 - Y.............~ ~ (5.23b) 

w h e r e - l < _ ~ < l  and 

! 
X 

-- ~1 + ~2, ~ - (5.24) 

Furthermore, Eqs. (5.23) may be rewritten as 

�9 ( ( )  : + 

v ( ( ) -  + 

in which the shape functions ~1(~) and ~2(~) are given by the expressions 

_ _ (5.25a) 
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with  0 _< n l , n 2  _< 1 .  

(5.25b) 

Figure 5.10 Discontinuous linear element 
in local coordinate systems. 

It is apparent that for gl = n2 - 1  the shape functions of Eqs. (5.25) reduce to 
Eqs. (5.7), which represent the shape functions of the continuous linear element. 

If the source lies on the J - t h  (J = 1, 2) local node of the element, its coordinates 
are going to be 

/'1;1 X2 -~- t~2 J;l X2 - -  Xl 
z j  = + ~j 

n~ Y2 + n2 Yl Y2 - Yl y j  - -  _~_ ~ j  

where 

and the relative distance of Eq. (5.12) becomes 
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~j 
r(~) = -z-[~ - ~J I (5.26) 

2 

where g o is the length of the j - t h  element. 

Having described the discontinuous linear element, we will study now the integrals 
of Eqs. (5.10) for the case where the source node i lies on the integration element 
j .  The integral (5.10a) may then be written for a discontinuous element as 

47r o f_t - - 9 1  -- ~fll (~) enr d~ gj 

f~-f r d~ "+- f~; r d~ 
= I~ + I2 (5.27) 

where, the i - th  node coincides with the J - t h  local node ( J  = 1, 2) of element j 
( j  = 1,2,..., N ) .  Note, that for discontinuous elements the number of nodes can- 
not be equal to the number of elements N .  For example, if all the elements are dis- 
continuous, the total number of nodes will be 2N,  which is the maximum possible 
number of nodes for a linear element discretization. 

The transformation 

~c -- -(1 + ~Cl)z + ~c,i (5.28) 

maps the integration interval [-1,~j] of I~ onto the interval [0,+1]. Substituting 
into the expression of 11 which is given in Eq. (5.27), we have 

I ~ -  f-~i' ~l(~)gn, 'd~ 

f,, ej _- ~l[(~-~.,)+(l+~.,)~]en~ -~(l+~.,)z (l+~.,)dz 

Introducing the quantities 

g J ( l + ~ j )  o-e-',1r +~.,)z, o , - - -  
2 2 

the above integral becomes 

fo  , 1 2 I1 - 
2 - r  = o  

ej 
gnO dO (5.29) 

which is of the form 

lx -- f o ~ (a + bO) gnO dO (5.3o) 
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where the two constants are 

I }  2 1 2 1 2 
a -- - - - ( n 2  - ~j) and b - - --- 

The integral of  Eq. (5.30) can be readily integrated by parts to yield 

I 1 -  a O ( g n O - l ) + b O  ~ lgn0-1)]~ 4 (5.31) 

or using the definitions of  the constants a and b, it results in 

I1 - -  1 ( ~ 2  - { j ) ( 1  + ~j) {gn 
/g 

ej ( 1 +  { j )  
5- 

_1} 
1 ] 1} 

+ - ( l a  +~. ,  2 f n  2 ( 1 + s c " )  - 4  (5.32) 

Referring now to the second integral of  Eq. (5.27), the transfomlation 

= ( 1 -  ( . , )z  + ( j  (5.33) 

maps the integration interval [(.,, + 11 of 12 onto the interval [0, + 1]. Thus, the new 
expression of  the integral is 

N 2 
(1 - ~j)dz 

Furthermore, by setting 

_ _  Cj 
0 - gJ (1 - ~ j ) z ,  01 - 2 ( 1 -  ~.i) 

2 

the above integral may also be written as 

fo O1 1 2 1.2 - (~ - 5 ) -  ~ 0  gnO dO (5.34) 

The integral of  Eq. (5.34) has exactly the same form as that of  Eq. (5.30), but with 
different values of  the two constants, which are now defined as 

/ / 2 
1 2 1 2 

a - (ec2 - ~j ) and b - - -  ~ g j ~ -~a 
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Substituting this set of constants into Eq. (5.31), we obtain the final expression for 
the second integral of Eq. (5.27) 

I2 - 1 (n2  - ~ j ) ( 1 -  ~j) {gn gJ ( 1 -  {j) 5- _1} 
_1(1~; _ ~.j)2 {2g n l  gJ ( 1 -  ~j) 

5- 
1 

- 4 }  (5.35) 

The results of Eqs. (5.32) and (5.35) are combined into Eq. (5.27) to produce the 
analytical expression for the influence coefficient g~ j when the node i lies on the 
element j (i.e., singular case). 

The other influence coefficient defined by Eq. (5.10b), is written for a discontinu- 
ous element as 

g~ - ~ ( ~ )  e , . -  d~ 
gj 

= Ia + 1.1 (5.36) 

where the indices i, j ,  and J are defined as for the case of Eq. (5.27). The inte- 
grals Ia and I.~ are evaluated following the procedure applied for I1 and 12. The 
resulting expressions for these two integrals are 

I.~ l(tcl + c { . - -  ,~.,)(1 + ~.,) e.,,. ~J -~(1 § (j) _1} 
i 1} 2 gn 2 (1+ ~") - 4  (5.37) 

and 

I4 - l(rc,~ + ~j)(l- ~.,) {gn cOj 
= ( 1  -- ~.,) 
2 

_1} 
1 )2 {1 

+-(1~ -~,1 2gn 
e ,  (1- ~j) 
5- 

1 
- 4 }  (5.38) 

which may be combined into Eq. (5.36) to give the analytical expression for the 
singular case of the influence coefficient g~ j . 

The influence coefficients for continuous elements may be deduced from the fore- 
going equations by setting ~ 1 - - 1  and ~ 2 -  1. In this case, Eqs. (5.27) and 
(5.36) give: 
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(i) for~j  = - l , i t i s  n: =~;2 = 1 ,  ~ ; = 2  and 

gj 
g~J - ~ ( e ~ e j - 1 . 5 )  

gj g:~ - ~ ( e ~ e j - 0 . 5 )  
(5.39a) 

(ii) for~j  = + l ,  it is ~;1 =~;9 = 1 ,  n = 2  and 

gj 
g~J - U(e,~e~ - 0.5) 

gj 
g;J - -=-(e~e~ - 1.5) 

471" 

(5.39b) 

(b) Numerical integration 

According to the previous discussion, integrals with logarithmic singularity, like 
those of Eqs. (5.27) and (5.36), can be set in the form 

I -- f)~ f(x) gnx dx (5.40) 

Special Gauss integration schemes have been developed for its numerical evalua- 
tion. Stroud and Secrest [10] approximated this type of integral as follows 

(1 
d~ ~ f i  f(~k)Wk (5.41) 

k=l 

and produced tables with the integration points ~: and the corresponding weights 
wk (see Appendix B and Refs. [10,1 1]). It should be emphasized here that the inte- 
gration interval must always be reduced to [0, + 1]. Therefore, when the source lies 
inside the element, the integration interval must be split into two intervals, [-1, ~j] 
and [~j, + 1]. Consequently, the influence coefficients of Eqs. (5.10) become 

=f_  f~' :' ~/,,,(~) en,-d~ + r ( , -  1,2) (5.42) 
1 j 

where ~j (J = 1, 2) denotes the node of the j - t h  element where the source node 
i is located and r is the relative distance between the source and the integration 
point given in Eq. (5.26). 

The transformations (5.28) and (5.33) map the two integration intervals [--1,~j] 
and [~j, +1] of Eq. (5.42) onto the interval [0, + 1], respectively. Equation (5.42)is 
then written as 
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fo 
47r g2 - r (1 + ~j)gn 
gj 

( 1  - gn 
.J o 

~ . j  
2 ( 1  + ~g)Z 

2 

dz 

dz 

or by expanding the logarithms 

47r g2 - (1 + ~j) gn 
gj 

gJ (1+ ~j) 
5- 

1 
dz 

-+-(1 + ~j) fo 1 ~b#)(z) gnz dz 

+(1 -~ . j )gn  gJ (1 - ~j) 
5- 

1 
dz 

+(1 - ,~g )f~l r gnz dz 

= 11 + I2+ I:~ + 14 (5.43) 

where ~/,!~l)(z) and ~h}~2)(z) (c~-  1,2) are transformed shape functions obtained 
from '@~(() by expressing the variable ( in terms of z according to Eq. (5.28) and 
Eq. (5.33), respectively. The integrals 11 and I:~ are regular and can be evaluated 
either analytically or by applying the conventional Gauss integration, while the 12 
and 14 are singular and can be evaluated numerically by virtue of Eq. (5.41). 

(c) Integration by extracting the singularity 

The integrals of Eqs. (5.10) may also be written as 

s 47r 92 - ~/,,~(~) gnr d~. 
g.j 

_=f_), (5.44) 

The integrand of the first integral vanishes for ( -  cj. Indeed, this integrand can 
be written as 

enr(, ) 

It can be easily noticed that this expression takes for ~ -  ~j the indeterminate 
form ~ .  Thus, applying consecutively L'H6spital's rule and taking into account 
that the derivatives ~b,'~(~)- d~,,,(~)/d~ and r ' ( ~ ) -  dr(~)/d~ are finite and do 
not vanish, the integrand in question yields 
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{[ - } - o 

This result shows that the first integral of Eq. (5.44) is regular and can be evaluated 
using conventional Gaussian quadrature. It is worth mentioning that the accuracy 
of this numerical integration is increased if it is carried out on two separate subin- 
tervals, [-1, ~j] and [~Cg, +1]. Apparently, this is dictated by the shape of the inte- 
grand as it is depicted in Fig. 5.11. The second integral of Eq. (5.44) exhibits a 
logarithmic singularity, but it can be readily evaluated analytically. In closing we 
could say that the method of extracting the singularity simplifies the evaluation of 
the integral (5.44), though it does not avoid the evaluation of singular integrals. 

1 .0-  

0 . 5  - 

f(~) 0.0 

-0.5 -~ 

-1.0 

f - -  

-1.0 -0.5 0.0 0.5 1.0 

Figure  5.11 Variation of the function f (~ )  - [~'l (~) - ~ (~j)]  gnr(~)  
for so.; - - 0 . 5 .  

Table  5. I Values of the integrals 9,~{, when the source i lies on the 
element. 

Influence Analytical Gauss integration, 
Coefficient integration Eq. (5.43) 

Extracting the 
singularity, 
Eq. (5.44) 

1) g~ -0.2970889377 -0.2970889376 -0.2970889377 

g~ j 0.0274675251 0.0274675250 0.0274675251 

f f ~ J  0.0274675251 0.0274675250 0.027467525 1 
2j 

g2 -0.2970889377 -0.2970889376 -0.2970889377 
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Table 5.1 presents the values of the integrals 92. They have been computed" (a) 
analytically from Eqs. (5.27) and (5.36), (b) using the special Gauss integration of 
Eq. (5.41) with 8 integration points, and (c) by extracting the singularity according 
to Eq. (5.44). In the last case, the regular integral was computed employing eight 
Gauss points on each of the subintervals [-1, ~cj] and [~cj, +1], while the singular 
one was evaluated analytically. For all cases the element data are xl = 3.0, 
yl = 2.0, x2 = 1.0, Y2 = 3.0, and nx = n2 = 0.5. 

5.4.2.2 Integrals with Cauchy-type singularity 

It has already been mentioned, that the computation of the diagonal elements /~i 
and Gi~ of matrices [H] and [G] requires an inside integration. In the preceding 
subsection we presented techniques for the evaluation of the coefficients G, which 
are line integrals with logarithmic singularity. The coefficients H , ,  however, are 
determined by evaluating integrals of the form (see Eqs. (5.14) and (5.15)) 

f ej 1 ff)o(~) COS.~ d ~ ,  7 ~ - - - - I ~ -  ~JI (5.45) 
-1 7" 2 

where ~,,(~) (c~ = 1,2) are given in Eqs. (5.25) and r in Eq. (5.26). 

Linear elements approximate the geometry by a straight line, so apparently it is 

r - (i - 0 
2 

along the whole element, since r = angle(r, n) (see Appendix A). Therefore, the 
integrand of Eq. (5.45) becomes 

o' 

Applying L'H6spital's rule, the above expression yields 

(5.46) 

because the derivative ~[~(~) = (-1)"In is constant (see Eq. 5.25) and finite in the 
interval [-1, + 1], and the same is true for the derivative r '(~), which according to 
Eq. (5.26) is given as 

g J sign(~) (5.47) 
S- 

where sign(~) (signum of ~ ) is the function defined as 
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sign(~) = I + 1 '  ~ > 0 

t - 1 ,  ~ < 0  
(5.48) 

Consequently, the value of integral (5.45) is 

f - r  d~ 0 (5.49) 
COS~ 

1 7" 

It should be noted that this result is not valid for higher order elements, since for 
these elements cosr ~: 0. 

The integrand in (5.45) behaves as 1 / r  and becomes infinite when r = 0. This 
singularity is known as Cauchy  type s ingular i ty .  Analytical, numerical as well as 
hybrid techniques have been developed for the evaluation of integrals with this 
type of singularity. Their use and programming require special care. In adc'lition to 
the diagonal elements /tii, the coefficients c i must also be computed (see Eq. 5.16 
or 5.20), which, of course, increases the computational task. However, it is possible 
to evaluate directly the elements H,, = H,i - c, by an indirect method that avoids 
the evaluation of any singular integral. 

5.4.3 Indirect evaluation of the diagonal influence coefficients 

The matrices [G] and [H] in Eq. (4.7) for constant elements, or in Eq. (5.19) for 
linear elements, are affected only by the boundary geometry, its discretization and 
the employed type of element. Hence, these matrices do not depend on the 
boundary conditions, that is, they remain unchanged for given boundary geometry, 
boundary discretization and type of boundary elements. 

The indirect integration is based on the fact that the function u = ~x + by + c is a 
solution to the Laplace equation, namely 

V'2u = 0  in 

with boundary conditions 

u = a x + b y + c  on F (5.50a) 

and 

u,~ -- V u .  n -- c~ nz + b ny on F (5.50b) 

(a) Eva lua t ion  o f  the e lements  Hi, 

Let us assume that a = b = 0  and c = l .  In this case , it will be u = l  and 
u,, - 0  on the boundary. Obviously, these values must.satisfy Eq. (5.19), which 
gives after substitution 
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[H]{1} -- 0 

where {1} is the vector whose elements are all equal to 1. The above equation may 
also be written as 

N 

~-] H o - 0  
j = l  

o r  

N 

H ,  - - ~ - ~  H o 
j = l  
z~e 3 

( i -  1,2, . . . ,N) (5.51) 

Equation (5.51) states that the diagonal element in the i - th  row of matrix [HI is 
equal to the negative sum of the remaining elements in this row. It should be noted 
that Eq. (5.51) is valid only for a closed domain f~. For infinite domains, it is not 
valid, because a constant value for u violates the regularity condition at the infin- 
ity. Nevertheless, it is possible even in this case to evaluate H,  using an indirect 
approach (see Ref. [12]). 

(b) Eva lua t ion  o f  the e lements  G ,  

Once the matrix [H] has been computed, the diagonal elements G. of matrix [G] 
can also be computed using an indirect method, which avoids the evaluation of any 
integrals, either regular or singular. To this end, Eq. (5.19) is applied for the func- 
tion 

u = a x  + by  

giving, 

o r  

N N 

G 0 u~ - ~ H  0 u y (i - 1 , 2 , . . . , N )  
j = l  j = l  

The above equation is solved for G~,, yielding 

?.in = j = 1 
(5.52) 

The boundary values u j and u j appearing in Eq. (5.52) are computed from the 
following expressions 
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u j --  a x j  + b y j  (5.53a) 

u j -- a n~ + b n~ (5.53b) 

where ( x j ,  y j )  are the coordinates of the j - t h  node, and (ni, n j) are the compo- 
nents of the unit vector normal to the j - t h  element. The constants a and b are 
chosen arbitrarily, but under the condition that u~ ;t 0.  This means according to 
Eq. (5.53b), that the vector with components the coefficients a and b must not be 
normal to the vector n j ( j  - 1, 2,..., N) ,  or, in other words, must not be parallel to 
the j - t h  boundary element. This may be achieved by setting a = 1, b = A > 0 
and choosing A so that 

YJ+~ - Y:~ 
x j + l  -- x j  

(5.54) 

5.5 Higher order elements 

Constant and linear elements can not approximate with sufficient accuracy the ge- 
ometry of curvilinear boundaries. For this reason it is recommended to use curvi- 
linear elements, for which the interpolating polynomials are of degree higher than 
one. In general, their form in the normalized interval [ -  1, + 1] is going to be 

f ( ~ )  -- a,, -+- a , ~  + a.e~ 2 + aa~ a + ...  + a, ,~"  ( - 1  < ~ < 1) (5.55) 

For n - 2, Eq. (5.55) yields the interpolation function for the q u a d r a t i c  or p a r a -  
b o l i c  element, for n - 3 that of the c u b i c  element and so forth. In what it follows 
we will limit our presentation to the parabolic element. For higher order elements 
or for a general theory on isoparametric elements the reader is advised to look in 
Ref. [13]. 

The boundary quantities u and u,, in the line integrals of Eq. (5.8) are functions of 
the arc length measured from some origin. When a parabolic variation is assumed 
the quantities u or un will be expressed by a polynomial of the form 

f ( s )  - ao + c~1 s + a 2 s  2 (5.56) 

The coordinates of point (x ,y )E  F ,  which varies during the integration, are also 
functions of s,  i.e., x = x ( s ) ,  !1 - y ( s ) .  Hence 

- J [  x ( ~ ) -  .., ]~ + [ y ( ~ ) -  y, ]~ - ,.(~) 

and 

O v  
v - v ( ~ ) ,  ~ ,~  - ~ - v , ~ ( ~ )  

O n  
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Consequently, the integral to be evaluated is of the form 

I -- f r  w(s)ds (5.57) 
J 

Of course, the integration can be performed by first establishing the transformation 
s -  s(~) and then substituting it in the integral (5.57). Although this method is 
conceptually simple, its implementation requires the establishment of complicated 
expressions of s and for this reasons it is not the most suitable. Instead, another 
method is presented below, which simplifies Considerably the integration proce- 
dure. 

The integration is performed over the normalized interval [-1, + 1] with respect to 
the intrinsic coordinate ~, and thus, the integral (5.57) becomes 

f I - -  w*(~)lJ(~)ld ~ 
1 

(5.58) 

where [J(~)[ is the Jacobian of the transformation which maps the parabolic arc 
Fj of the xy-plane onto the straight line segment with - 1  < ~ _< 1 and r / -  0 of 
the Ol-plane (see Fig. 5.12). 

y f, 71 

1 _ . 3  = 

x - 1  0 1 

Figure 5.12 Parabolic element in global and local coordinate systems. 

The boundary quantity f (u or u , )  is approximated directly in the interval 
[-1, +1] by a second order polynomial in {, namely, 

f(~c)-  o~0 + ch { + c~2~ c2 (5.59) 

The coefficients o~0, cq and c~2 are determined from the requirement that the 
function f(~) takes the nodal values j], f2, f~ at points ~ c - - 1 , 0 , 1 ,  respectively 
(see Fig 5.12). Hence, 

f ( - 1 ) -  f~ 

f ( O ) -  fi 

f ( 1 ) -  f3 

(5.60) 
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Applying conditions (5.60) to Eq. (5.59), we get the following system of equations 
for the unknown coefficients 

0~ 0 - -  O~ 1 -[- C~ 2 - -  j ~  

O~o - -  f2 

O~o + c~1 + c~2 - f3 

whose solution is 

ao - f2 

t ~  1 = f ,  - -  fl (5.61) 
2 

or2 __ fl -- 2f2 + f~ 
2 

Introducing Eqs. (5.61) into Eq. (5.59), we obtain the expression of the boundary 
quantity in terms of the three element nodal values 

f(c)  s + (5.62) 
2 2 

Equation (5.62) may further be written in the form 

(5.63) 

o r  

3 

f(~) - ~-~.(,,~(() f~ (5.64) 
t i t - -  l 

where 

1 

~ '2 (~ ) -  (1 - ~)(1 + ~) 

1 - + r  

(5.65) 

The functions defined in Eqs. (5.65) are the shape functions of the parabolic or 
quadratic element. 

The mapping of the parabolic element from the xy-p lane  onto the interval 
- 1  <_ ~ < 1 of the 07-plane is accomplished through the transformation 



132 BOUNDARY ELEMENTS 

x ( ~ ) -  bo 4- bl ~ -+- b2~ 2 

y(~) - co + c~ ~ + c ~  ~ 
(5.66) 

We can readily conclude from Eqs. (5.59) and (5.66) that the parabolic element at 
hand is isoparametric, since both the geometry and the boundary quantity are 
approximated by polynomials of the same degree. The coefficients bk and ck 
(k = 0,1, 2) in Eqs. (5.66) are evaluated from the requirement that the element arc 
should pass through the points (Xl, y~), (x2, Y2) and (x3, Y3) for ~ = - 1, 0,1, re- 
spectively. These conditions are expressed mathematically as 

x ( - 1 ) -  Xl, x(O) -  X2, X(1)-  X3 

y ( - 1 ) -  y~, y (O) -  Y2, y ( 1 ) -  y:~ 

It is apparent that the above conditions yield expressions for x(~ c) and y(~C), which 
are similar to those of Eq. (5.64). More specifically, 

3 

- E 

3 

(~ -:= 1 

(5.67) 

where the shape functions (,,,(() are given in Eq. (5.65). 

Equations (5.67) may be employed to express the distance r ,  as well as the kernels 
v(r) and v,(r) of the integrals representing the influence coefficients, as functions 
of the variable ( .  Finally, the Jacobian of Eq. (5.58) is evaluated from the expres- 
sion 

Hence 

- - [ (b , .  + 2g,2~) 2 + (C 1 -~- 2C2~) 2 ]1/2 (5.68) 

where on the basis of Eq. (5.61), it is 

bl - -  x:~ - x l  , b2 - Xl - 2 x 2  + x:~ 

2 2 

Y3 - Yl Yl - 2y2 + y:~ 
C1 - - -  ~ C 2  - -  

2 2 

(5.69) 
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After discretizing the boundary into N parabolic elements, the boundary integral 
equation (3.31) may be written as 

N N 

g i u i - - - - j ~ l f F j V U n d S - ~ - j ~ l f F j u v n d 8  (5.70) 

Taking into account the parabolic variation of the boundary quantities on the ele- 
ments, the second line integral in the right-hand side of Eq. (5.70) yields 

�9 .,;" u(q)vn(pi,q)dsq -- f r  (~x ul -'~- r u2 "~" r u3) Vn d8 
j i 

-- h~Ju 1 + h~Ju 2 %- h 2 u  3 (5.71) 

where it has been set 

h~J -- f F 2/31 Vn ds 
J 

h2Y - f r ~2 v,, as 
3 

J 

(5.72) 

In order to evaluate the above integrals, their integrands are expressed in terms of 
the variable 

f f '  co~r h:r  - ' e ' ,~ ' , ,  d.~ - ~ , , , ( ~ )  I,](~)ld~ (c~ - 1 , 2 , 3 )  (5.73) 
"~ -~ 27rr (~)  

Similarly, we obtain 

= .ql j ~ + .q~J u,~ + g:'~ ~;I (5.74) 

where 

g2 -- f r j ~ , v d s  

27r 
(o~ - 1, 2, 3) (5.75) 

The computation of integrals (5.73) and (5.75) is performed numerically following 
a procedure similar to that employed for the linear element. Thus, for the outside 
integration (i ~: j) the conventional Gauss integration is utilized. For the inside 
integration (i - j ) ,  the analytical method for the computation of 92 becomes too 
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complicated and it is not recommended. Instead, the most suitable turns out to be 
the method of extracting the singularity. The elements H~i are computed using the 
indirect method presented in Section 5.4.3, avoiding, thus, the evaluation of singu- 
lar integrals. 

z - 1  0 +1 

Figure 5.13 Discontinuous parabolic element in global and 
local coordinate systems. 

, , , . . _  

r 

The corner points or the points where there is a change in the boundary conditions 
are treated using one-sided discontinuous parabolic elements (see Fig. 5.13 for 
~,:2 = 1). For discontinuous parabolic elements, the coefficients of the polynomial 
(5.59) are determined from the conditions 

f(- '~l  ) - fl 

f ( 0 ) -  f2 (5.76) 

f(',;., ) - ./i~ 

~,() - ( ~ ,  h:, + '*2 ',:( - f l  

c~0 -- fe (5.77) 

c~, + (~, ~'2 + ~2 ~ - f~ 

Equations (5.77) are solved for the unknown coefficients C~o, c~l and (~2 giving 

which yield 

~ = - ~  fl + ~ f ~ K  + K f' 

/~2 
K Kf~ 

(5.78) 
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where 

Introducing the above values of the coefficients c~i in Eq. (5.59), the latter takes 
the familiar form 

3 
f ( ( )  = ~ ~,,(() f ,  (a - 1, 2, 3) (5.79) 

o---1 

where ~ ( ~ )  are shape functions given as 

2/32(~ ) __ /~1 -~ ~2 [/~1/,62 -~-(~2 -- /%1)~ -- ~2] 
K 

- + 

(5.80) 

Evidently, Eqs. (5.80) reduce to the shape functions of Eq. (5.65) for ~;1 - ~2 - 1. 
Higher order elements can be derived by choosing interpolating polynomials of 
higher degree and following exactly the same procedure as for the quadratic ele- 
ment. 

All continuous elements derived on the basis of the polynomial (5.55) for n > 1, 
produce a continuous variation of the boundary quantity on the whole boundary, 
that is, they do not exhibit jumps at the interelement nodes. This type of continuity 
is called C ~ continuity. These elements, however do not ensure continuity of the 
derivative at the interelement nodes. This continuity, referred to as C ~ continuity, 
can be achieved using shape functions described by special third order polynomials 
known as Hermite polynomials or Hermite interpolation functions. In this case, the 
element has two nodes which are placed at its extreme points. Unknowns are the 
values fl and f2 of the boundary quantity, along with the corresponding deriva- 
tives 01 - (df/(t~)~ and 02 - (df/d~)2. The boundary quantity is expressed as 

f ( ~ ) -  ~1(~)fl + #)2(~) f2 + ~:~(~)0, + ~4(()02 (5.81) 

in which the shape functions #~,(~) are given by the Hermite polynomials [1] 

1 ( 1 -  ~)2 (2 + ~) r162 - 

1(1-  ~)2 (1-+- ~) - 

I (I + ~)2 (2 -  ~) 

I (1 + ~)2 ( i -  ~) 
- -4 

(5.82) 
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5.6 Near-singular integrals 
Once the unknown boundary quantities have been established from the solution of 
the boundary integral equations, the values of the potential u and its derivatives 
u,x = O u / O x  and u,y = Ou/Oy  at internal points can be computed using the ex- 
pressions (4.11), (4.15) and (4.16), or the corresponding ones for the linear and the 
parabolic element approximation. The influence coefficients involved in the afore- 
mentioned equations are expressed in terms of line integrals on the elements F j 
whose integrands involve factors of the form 

1 1 
gnr  , - ,  --7 (5.83) 

F 7" 

where r - - I P -  q l is the distance between the points P E f2 and q E Fj.  Clearly, 
because point P lies inside the domain f2, while point q lies on the boundary, it 
is always r ~: 0. Therefore, these integrals, at least theoretically, are regular since 
the value of their integrands is always finite. When point P lies f a r  from the 
boundary, the functions (5.83) have a smooth variation and consequently the con- 
ventional Gauss integration gives accurate results. However, when point P lies 
near the boundary, the functions (5.83) may take a very large, though finite, value 
and, thus, their variation is not smooth anymore. 

" ~ - ~  2 (1.0, 3.0) 

P(2.48,1.48) ~ . 0 , 1 . 0 )  

Figure 5.14 Linear element and internal point P near the boundary, 
d -  m i n ( r ) -  0.02 << 1. 

In order to illustrate this behavior, we consider the element of Fig. 5.14. The inter- 
nal point P lies near the boundary. Applying Eqs. (5.3), one obtains the global 
coordinates in terms of the local coordinate ~, 

x(~)- 2-~ 

and Eq. (5.12) gives the relative distance between points P and q as 
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r(() - { [ x ( ( ) -  2.48] 2 + [ y ( ( ) -  1.4812 }1/2 

= [(0.48 + ()2 + (0.52 + ()2 ]1/2 ( 5 . 8 4 )  

The variation of the functions 1/r(~) and l / r ({)  2 is shown in Figs. (5.15) and 
(5.16), respectively. We notice the large values of these functions at ~ - - 0 . 5 ,  
that is at point A, which is the normal projection of point P on the element. 

,(e) 
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Figure 5.15 Variation ofthe function 1/r(~) along the element. 

Consequently, the integrals of the functions (5.83) for points P near the boundary 
behave like singular integrals, although they are not. In the literature, these inte- 
grals are known as near-singular integrals. Their evaluation faces considerable 
difficulties, because neither the conventional Gauss integration nor those methods 
suitable for singular integrals can be employed. Nevertheless, other special tech- 
niques have been developed for their evaluation. Among them, the most popular 
are: the method of the element subdivision, and the method of the coordinate trans- 
formation. The first one has been discussed in detail by Lachat and Watson [14] 
and Kane et al. [15], while the second one has been presented by Telles [16]. Only 
the first method is presented below, while the other one can be found in the rele- 
vant literature. 

The method of element subdivision 

This method has been successfully employed to achieve a uniform accuracy for the 
values of the line integrals. The success of this technique is based on the user's ex- 
perience. This technique is illustrated by evaluating the following integral 



138 BOUNDARY ELEMENTS 
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Figure 5.16 Variation of the function 1 / r ( ( )  2 along the element. 

f_l d~ (5.85) 1 
- ,  

The plot of its integrand, which is depicted in Fig. 5.15, suggests subdivision of the 
interval [-  1, + 1] in [bur subintervals: 

Subinterval 1" [ -1 , -0 .6 ]  

Subinterval 2: [ -0 .6 , -0 .5]  

Subinterval 3" [-() .5,-0.4]  

Subinterval 4: [ -0 .4 ,+1]  

In each subinterval, the integral can be evaluated using any integration rule such as 
the trapezoidal rule, Simpson's rule, Newton-Cotes integration formulae, etc. The 
Gauss integration is also recommended for this case. Its application requires first 
transformation of each subinterval onto the interval [-1, + 1]. If ~k and ~k+l repre- 
sent the end points of the k - th  subinterval, then the linear transformation 

 k+l + 
= + "------------------~ q ( - 1  <_ r/<_ 1 ) (5.86) 

2 2 

serves the purpose. The value of the integral over the k - t h  subinterval is given as 

~k+l - ~k @" 1 
Ik = Z_~ w i  (5.87) 

2 2 
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where r/i and w~ (i = 1,2,... ,n) are the abscissas and weights of the n - th  order 
Gauss integration. 

The integral (5.85) has been computed numerically using various subdivisions of 
the element shown in Fig. 5.14 and the results are given in Table 5.2 along with the 
exact value. These results reveal that the choice of element subdivision greatly 
affects the accuracy, even though the total number of integration points remains the 
same (20 points). Therefore, special care should be taken for the computation of 
near-singular integrals to avoid an uncontrolled error. A general rule for acceptable 
results is to choose two equal subintervals at both sides of point A, whose length is 
sufficiently smaller than the distance d (see Fig. 5.14). 

Table 5.2 Values of the near-singular integral (5.85) for various 
subdivisions of the element. 

Number of Number of y f  1 d~ 
subintervals Subintervals Gauss points x r 

1 [-1.0, + 1.0] 20 7.55905 

2 [-1.0, -0.5] I0 6.34858 

[-0.5, +1.0] 10 

2 [-1.0, -0.5] 12 6.29535 

[-0.5, +1.0] 8 

2 [-1.0, -0.5] 8 6.35520 

[-0.5, +1.0] 12 

4 [-1.0, -0.6] 5 6.30650 

[-0.6, -0.5] 4 

[-0.5, -0.4] 5 

[-0.4, +1.0] 6 

4 [-1.0, -0.6] 6 6.30934 

[-0.6, -0.5] 4 

[-0.5, -0.4] 4 

[-0.4, +1.0] 6 

Exact value 6.309586 
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5.7 References 

From the up to this point presentation of BEM, it becomes evident that its evolu- 
tion as a computational method for solving realistic engineering problems is based 
on its success in solving singular boundary integral equations. Therefore, the tech- 
nology of the boundary element, namely, the construction of various types of ele- 
ments, the effective integration over them, especially of the singular kernels, as 
well as their manipulation in order to treat discontinuities of the boundary quanti- 
ties, is among the most important ingredients of BEM and has been a field of 
intense research ever since BEM appeared as a computational method. For more 
information about this subject, the reader is advised to look in books by Brebbia 
and Dominguez [7], Kane [9], and Banerjee and Butterfield [13]. Regarding the 
evaluation of singular integrals, a rich technical literature is available. Sugges- 
tively, we mention the work of Hall [17], Doblare [18] as well as the recently pub- 
lished book by Sladek and Sladek [19], who presented methods for the evaluation 
of singular integrals. Hayami and Brebbia [20], apart from the singular integrals, 
treated the near-singular ones. A method for the computation of line integrals with 
logarithmic singularity has also been presented by Katsikadelis and Armenakas 
[21]. Theocaris and his co-workers [22, 23] have published extended work on the 
integration of singular integrals. Considerable work, especially on the evaluation of 
hypersingular integrals has been published by Guiggiani and his co-workers 
[24, 25]. The reader can also find extended literature related to this subject in the 
chapters Computational Aspects of the proceedings of the hzternational Boundary 
Element Cot![erences (Computational Mechanics Publications, Southampton), 
which have taken place uninterruptedly for the last 22 years. 
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Problems 

5.1. Derive the shape functions for the cubic element when the interior nodal 
points are placed at 

(i) ~2 = - 1 / 3  and ~:~ = 1/3, 

(ii) (2 = - 1 / 2  and (:~ = 1/2. 

5.2. Given the circular sector of radius R - 3 and angle 00 - 7r/12, compute its 
area by approximating the circular arc with (i) linear, (ii) quadratic and (iii) 
cubic elements. For each case determine also the error. 

5.3. Compute the near-singular integral using Gauss integration 

f +x dx I -  ]4 
1 [ ( x _  0.25 )2 + 0.015 

5.4. Compute the integral 

when I'j is a quadratic element passing through the points 1(4.30, 2.50), 
2(4.10, 2.90), 3(3.80, 3.20) and the source lies at point P (4.15, 2.65). 

5.5. Compute the integrals 9,~'J (c~ = 1,2) for the linear element with nodal 
points 1(1,2) and 2(1.5,2.3), when ~;1 = ~2 = 0.15 and the source lies 
consecutively at point 1 and point 2. 



Chapter 6; 
Applications 

6.1 Introduction 

As it was mentioned in Chapter 3, the Laplace and Poisson equations describe the 
behavior of many physical systems. In this chapter the BEM will be employed to 
solve several problems, such as torsion of non-circular prismatic bars, deflection of 
membranes, bending of simply supported plates, heat conduction and fluid flow. 
All these problems are governed either by the Laplace or the Poisson equation. 

6.2 Torsion of non-circular bars 

6.2.1 The warping function 

Let us consider a bar of arbitrary cross-section twisted by moments M t  applied at 
its ends (Fig. 6.1). The cross-section is constant along the length of the bar. Ac- 
cording to Saint-Venant's torsion theory [1, 2], the deformation of the bar consists 
of (a) rotations of the cross-sections about an axis passing through the t w i s t  c e n t e r  

of the bar, and (b) warping of the cross-sections, which is the same for all sections. 
Choosing the origin of the coordinate system at the twist center of an end section 
(Fig. 6.1), the rotation at a distance z is O z ,  where 0 is a constant expressing the 
rotation of a cross-section per unit length. Referring to Fig. 6.2 and assuming that 
this rotation is small, the displacements u and v of point A ( x , y , z )  due to the 
rotation are determined as 

u - - (AA')s in  c~ - - 7 " 0  z y - - 0  z y  (6.1a) 
7" 

X 
v - ( A A ' ) c o s o z  - r O z -  - O z x  (6.1b) 

r 

The warping of the cross-section is defined as 
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Figure 6.1 Bar of arbitrary cross-section twisted by moments end Mr. 

Figure 6.2 Displacement components in a cross-section of a twisted bar. 
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w - 0 r y) (6.2) 

where r y) is the warping funct ion.  

The displacements given by Eqs. (6.1) and (6.2) yield the following strain compo- 
nents 

Ou Ov 
c~ = = O, cy = = 0 

Oz Oy 

Ow Ou 
- - =  O, 7xy - 
Oz Oy 

+ 0 - 2 - 0  
Ox 

V :EZ w 
_ _ _  Ou ( 0 r  Ow ~ - - - - 0  - 
O x O z -~z Y 

_ Ow + Ov I 0r 
o-; 

(6.3) 

Hence, for homogeneous linear elastic material the corresponding stress compo- 
nents resulting from the above strain components are 

( 7  ~, - -  c r  zt - -  c r  z - -  7 - ~ , u  - -  0 

r~z - GO ~ -  y 

7-y~ - GO -~y + :c 

(6.4) 

The equilibrium equations for the three-dimensional state of stress in the absence 
of body forces, are 

Oa___L + Or,,:j + 0 7 -  = 0 (6 .5a)  
Oz Oy Oz 

OT~y +_ Oay + O T  = 0 (6 .5b )  
Oz Oy Oz 

0 7  + 07-y~- + 0o-: _ 0 ( 6 . 5 c )  
Ox Oy Oz 

Introducing the constitutive relations (6.4) into Eqs. (6.5) we obtain 

7-xz 
Oz 

= 0 (6.6a) 
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OTuz = 0 (6.6b) 
Oz 

02----~r + 0~-~r = 0 (6.6c) 
Ox 2 Oy 2 

The first two of  Eqs. (6.6) always hold, since the stress components ~-~z and 7-uz 
are independent of  z .  The last one, Eq. (6.6c), expresses the condition which must 
be satisfied by the warping function r y). 

In addition, the stress components should satisfy the traction boundary conditions 
on the surface of  the bar, namely 

O'x n x  Av 7xy  Tl, y --~ Txz  n z  ~ ~x 

Txy n x  Av O'y 7~y -Av Tyz 7~z ~ ~y 

Txz ?lz %- Tyz ll!j -~ O'z n z  - -  tz 

(6.7) 

where n~, n~, n~. are the direction cosines of  the outward normal vector and t~, 
tx, tz are the traction components on the surface of  the bar. 

(a) We examine first the boundary conditions on the cylindrical surface of  the bar. 
This surface is traction free, that is, t,~.--t,j = tz = 0.  Moreover, it is nz = 0 .  
Taking into account Eqs. (6.4), we can readily show that the first two of  the 
boundary conditions (6.7) are identically satisfied, while the third one yields 

~---~x - y n~:+ 
0~ 

-y+ x 

which may also be written as 

0__r162 n~  + 0 r  n,~ - y n~  - ~" n:, 
Ox Oy 

or  

0__~r = Y nx - x ny (6.8) 
On 

The warping function r may be determined from Eqs. (6.6c) and (6.8) by solving 
a Neumann problem for the Laplace equation, provided that the function 

q~,~(s) = y nx - x ny (6.9) 

satisfies the existence condition for the solution of  the Neumann problem, that is 
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f r  Cn ds -- 0 (6.10) 

This condition results from Green's identity, Eq. (2.16) for v -  1 and u = r  
Indeed, using Eqs. (2.3), Eq. (6.9) is written as 

dx d._yy + x - -  
r  - Y ds ds 

l d ( x 2 + y 2 )  
2 ds 

Consequently, noting that the function 1 ( x 2 +  y2) is continuous on the whole 
boundary, we obtain 

d 

/ ~ - 0  
2 

where B is any point on the boundary taken as the origin for the variable s. 

(b) On the end cross-sections z -  0 and z -  L,  it is nx - n y  - 0  and nz - 1. 
Thus, the boundary conditions (6.7) become 

T = - - t ~ ,  T:~--t:~, c T : - t : - O  (6.11) 

which state that the end cross-sections are subjected only to tangential tractions. 

We can readily prove that the stress resultants of these tractions vanish. Namely, 

~ 7-= dQ - 0 and ~ T:j: dl"~ - 0 (6.12) 

Indeed, the third of Eqs. (6.5) becomes 

07"xz OUyz 
t -- {} 

Ox Oy 
(6.13) 

Moreover, the first of Eqs. (6.12) may be written as 

Tzz + X OqTxz OTyz + 
Ox Oy 

d~ 

= ~ I O(xr= Ox + O(xrYZ dR 

Next applying Gauss divergence theorem (2.9) and using the last of Eqs. (6.7), the 
above equation yields 
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f T"xz d ~  - f r  X(Txz nx + 7yz n y ) d s  -- 0 

since nz - 0 and tz - O. 

In a similar way, we can prove the second of Eqs. (6.12). 

The moment resultant on the cross-section z - 0 is going to be 

Mt -- (x 7"uz - y 7=)  d ~  = GO x 2 + y2 + x - -  - y d ~  
Oy -~x 

(6.14) 

(6.15) 

Setting 

2 y2 0r 0r x + + x - - - y  d~ (6.16) 

we arrive at 

Mt - GIt  0 (6.17) 

The constant quantity I t ,  which depends only on the shape of the cross-section, is 
usually referred to as tors ional  constant .  The quantity Glt  is called the tors ional  
rigidity of the cross-section. Denoting by 0 - 0 L the relative rotation of the end 
cross-sections, Eq. (6.17) may also be written as 

Mt - GL -0 (6.18) 
L 

The quantity G I t / L  expresses the tors ional  stijfiless coe[ficient  of a bar having 
length L.  This coefficient appears in the stiffness matrix of grid elements or three 
dimensional beam elements. 

From the foregoing analysis, we conclude th~it the determination of the torsional 
constant of bars as well as of the shear stresses due to torsion, require the estab- 
lishment of the warping function 4) of the cross-section. For simple cross-sectional 
geometries, (e.g. elliptical, rectangular, triangular) the warping function r can be 
determined using exact or approximate analytical solutions. However, for cross- 
sections of complex shape, as it happens with realistic engineering problems, it is 
necessary to solve a Neumann problem for the Laplace equation in an arbitrary 
domain ~ .  Hence, the warping function r is established as the solution of the fol- 
lowing boundary value problem 

~ 7 2 r  in ~ (6.19a) 

or 
= yn~ - xny on F (6.19b) 

On 
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The function r is determined exactly apart from an arbitrary constant term. That 
is, a function r is obtained in the form 

r y) = r y) + c (6.20) 

where r y) is the exact solution and C is a constant. 

Apparently, the stress components and the torsional constant are not influenced by 
this arbitrary constant, because, according to Eqs. (6.4) and (6.16), only the deriva- 
tives of r are required for the evaluation of these quantities. With respect to the 
displacement w, the arbitrary constant introduces a rigid body motion in the 
direction of the bar axis (see Eq. (6.2)), which, however, does not influence the 
deformation of the cross-section. The constant C can be determined by specifying 
the displacement w at a point of the cross-section, e.g. w -  0, which yields 
r = 0 at this point and then r y) = r y ) -  C.  It is advisable to choose the 
twist center of the cross-section as the point of zero axial displacement. Therefore, 
the establishment of this point should precede, if it not a pr ior i  known. 

Determinat ion o f  the twist center 

The solution of the boundary value problem (6.19) gives the warping surface, if the 
origin of the coordinate axes is taken at the twist center of the cross-section, that is 
the point which does not undergo any displacement during the rotation of the cross- 
section. In axisymmetric cross-sections (e.g. rectangle, equilateral triangle, ellipse, 
etc) the twist center can be readily established by inspection since it coincides with 
the geometric center of the cross-section. However, for cross-sections of arbitrary 
shape, the twist center is not known and it should be determined in order to estab- 
lish the warping function. This can be achieved by working as follows. 

When the origin O does not coincide with the twist center (Xo, Yo), Eqs. (6.1a,b), 
(6.2), (6.3), (6.4), (6.6c) and (6.8) are written respectively as 

u = - 0  z (y - y()) (6.2 l a) 

v = 0 z ( x  - Xo) (6.21b) 

w = 0 r y) (6.21c) 

c~ = 0 ,  cy = 0 ,  Cz = 0 ,  7~y = 0  

or 7 z-o 

")/  y z - - -  
or  

(6.22) 
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O'x - -  O'y - -  O'z - -  T x y  - -  0 

"1-= - G O  
or yo) 

7uz - GO 
0r (~ ) 
~y + -Xo 

~- (6.23) 

02---~r + 02----~r -- 0 (6.24) 
O X  2 O y  2 

0r  = (y _ Y0) nx - (x - x0) ny (6.25) 
O n  

Equation (6.25) may further be written as 

0 (r + y o x -  x o y )  - y n x  - x n y  
O n  

(6.26) 

or  

0r 
On 

= yn~ - xn~ (6.27) 

where 

r - r + y o x -  xoy + C (6.28a) 

and consequently 

r - r - y o x  + x o y - C  (6.28b) 

Since ~72r 272r it is apparent that the Neumann problem being solved, is 
actually 

V2r * - 0  

0r 
O n  

= y n z  - x n y  

(6.29) 

, 

which yields the function . As a result, the stress components and the torsional 
constant should be expressed in terms of the function r and not r  This can be 
accomplished by introducing r from Eq. (6.28b) into the expressions (6.23), 
which gives 
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0r / (6.30a) 7= - GO - ~ z  - y 

"ruz = GO 0r + x ) (6.30b) 
Oy ) 

Using the above relations in Eq. (6.15) to express the moment M t  with respect to 
the origin of the coordinate axes, we obtain 

It--~[x2+y2+x or or 
Oy - Y - ~ x  

d~ (6.31) 

On the basis of Eqs. (6.28a), (6.29), (6.30) and (6.31), it can be concluded that. 

(a) If the origin of the coordinates does not coincide with the twist center of the 
cross-section, then the warping function r obtained as the solution of the 
Neumann problem, has undergone a rigid body rotation in the plane of the 
cross-section and a displacement parallel to the axis of the bar (see Ref. [1 ]). 

(b) The stress components "r=, Ty:, and the torsion constant It do not depend on 
the position of the origin of the coordinate axes. 

The actual warping function r is determined by establishing first the quantities 
x0, Y0 and C.  These quantities can be obtained from the minimization of the 
strain energy produced by axial normal warping stresses, which are ignored by the 
Saint-Venant's theory. This energy is given as [5] 

] E02~ r d~ 
v,,, c )  - 2 

_ ; _ l E O  2 4) - y o x §  d~ 
2 

(6.32) 

The minimization conditions require 

OH = () 
Oxo 

017. 

Oyo 

OH 

O C  

- -0  

= 0  

(6.33) 

Equation (6.32) is differentiated with respect to each of the three quantities to yield 
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I~ Xo - I~y Yo - S~ C = - I1  

I ~  Xo - Iu Yo - Su C = -19.  

S~ Xo - Sy Yo - A C = -13 

(6.34) 

where it was set 

A = f d~, 

Ix - f ~ y2 d~, 

t "  r Ix - ~ y d ~ ,  
,)9t 

s~ = f~ y d~, 

I~y -- s xy dr2, 

12 - f ~  x r dr2, 

Su -- f ~  x dr2 

Iu = f ~  x 2 dr2 

13 - f ~ r  dr2 

(6.35) 

Since the torsion problem is solved by the BEM, the domain integrals in 
Eqs. (6.35) should be converted to boundary line integrals in order to maintain the 
pure boundary character of  the method. This can be achieved using Eqs. (2.5), (2.6) 
and (2.9). Thus we can write 

2 ~ Ox Oy 
1 P 

2 ,J1 
(6.36) 

0 2 1 
(6.37) 

0 1 
(6.38) 

2 1 0 :~ 1 
(6.39) 

i v _ s  0 1 s  :~ (6.40) 

4 
0 0 (xy2) dr2 

! 
f ~y (~n~ + y,~) ds 

4 ,.IF 
(6.41) 

To treat the integrals involving the function r Green's second identity (2.16) is 
applied consecutively for the functions 
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2 2 2 y r  x r  r 2 ul = ~ ,  u2 - - ~ ,  u3 - - ~  (r 2 -- x 2 + y ) 
8 8 4 

(6.42) 

and for v - r Noting t h a t  ~72Ul - y,  V2u2 - x and V2u3 - 1, we obtain 

I ~ - - f ~ y r  d~ - f r [  r 0ul~ - 0 n  
0r 

u~ --~- n 
ds (6.43) 

1 2 - f x r 1 6 2  
�9 Ou2 0r 

U 2 
On - ~ n  

ds (6.44) 

r Ou:~ 0r 
- -  U 3 

On 
ds (6.45) 

The foregoing integrals are computed using BEM with constant elements. 

The steps required in order to solve the torsion problem for bars with arbitrary 
cross-section can be summarized as: 

(a) The function r is determined as the solution of the Neumann problem de- 
scribed by Eqs. (6.29) with respect to the arbitrarily chosen xy-system of 
axes. Special care should be taken to ensure the existence of a solution for the 
Neumann problem (see Example 4.2). 

(b) The coordinates :r0, Y0 of the twist center and the constant C are computed 
from the solution of Eqs. (6.34). 

(c) The warping function cp is evaluated using Eq. (6.28b). 

(d) The boundary stress 7t.. is computed using the procedure described in the fol- 
lowing Section 6.2.2 and the torsion constant It is given by Eq. (6.31) or even 
better by its boundary integral form (6.47), which is derived right below. 

The domain integral (6.31) is converted into a boundary line integral to avoid not 
only the domain integration but also the evaluation of the derivatives of r which 
are involved in the integrand. This is achieved following the procedure below. 

Equation (6.31) may be written as 

0 * 0 * 
dl2 (6.46) 

Using the Gauss divergence theorem (2.9) the above integral is transformed to the 
following boundary line integral 

(6.47) 
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Remarks 

The solution of the Saint-Venant torsion problem can also be obtained by determin- 
ing the following functions: 

(a) The function ~(x, y) ,  which is the conjugate of r y) and the solution of the 
Dirichlet problem 

V2r = 0 in f2 

1 y2 ) + c  on F 

where C is an arbitrary constant. In this case, the shear stresses and the torsional 
constant are expressed as 

7-xz - GO ~ -  y 

- co( ~  + x) 
k O.z. 

o~/~ o~/,] + y2 _ x - y d~ 

(b) The Prandtl's stress function F(x,y)  which is the solution of the Dirichlet 
problem 

V 2 F - - 2  in ~ 

F = C  on F 

where C is an arbitrary constant. The shear stresses and the torsional constant are 
given as 

7= - G O  OF 
Oy 

"rvz = -GO 
OF 

Oz 

+ 

The formulation in terms of the warping function r is preferred over the formula- 
tions in terms of the foregoing two functions, because: 
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(i) Once the function ~ or F is established, the determination of the warping 
function, hence of the axial displacements, from these functions requires the 
solution of an additional potential problem which is equally difficult as the 
original one. 

(ii) When the cross-section does not have holes, that is the domain ~ is simply 
connected, the arbitrary constant C appearing in the boundary condition can 
be given an arbitrary value, e.g. C = 0. However, when the cross-section has 
holes (hollow cross-section), that is the domain Q is multiply connected, then 
the constant C does not, generally, take the same value on all the contours 
and its exact values should be determined. This can be done by imposing addi- 
tional conditions which ensure the uniqueness of the displacements. There- 
fore, the solution of the problem becomes even more complicated. 

6.2.2 Evaluation of stresses 

The stress components "r~z and "r:,jz are evaluated using Eqs. (6.4). Apparently, 
these are determined by evaluating first the derivatives of the function r  For 
points inside the domain of the cross-section, the derivatives can be computed by 
applying Eqs. (4.15) and (4.16). 

The maximum values of the stresses appear on the boundary. The stress 7-,,~ is 
zero, whereas the stress q-t.- is given by the relation 

T ' t z  ~ - - T x z  11!1 _ql__ T y z  ll, x 

which by virtue of Eqs. (6.4) becomes 

~'t: - GO 0r  \ 
+ * 'm + y n:, / (6.48) 

Ot J 

The derivative O r  Or  can be computed through numerical differentia- 
tion of r along the boundary as it is described next. 

Let us consider three consecutive nodal points i -  1, i ,  i + 1 on the boundary. 
The values r and r can be expressed in terms of the value of r and its 
derivatives at point i using Taylor series expansions 

,q  _ 1 ( r  ....... ), s:, 

1 (r ..... ), .s~ + 1 (r ....... )~ .~ + 

- + 6 ' 

where 

8 1  - -  find 82 = 
2 2 
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with g, being the length of the i - t h  element. 

In the above expressions, we neglect terms of order higher than the second and 
subsequently we eliminate the second derivatives. This yields the central difference 
approximation for the first derivative 

(~),s)i  - -  " ~  i - -  t-E1 QSi-1 + Og2 (75i -}- (2~3 (75i-t-1 (6.49) 

where 

$2 SI ~ S 2 S1 
c~l = -  a g - - ~ ,  aa = (6.50) 

S1 (81 + 8 2 ) '  81,'42 82(81 + 82)  

If S 1 - -  ,5 2 - -  Z~kS, we obtain the known expression 

(6.51) 
] , -  2 A s  

At points near the comers the derivative OcelOt is discontinuous. For this reason 
.forward (backward) differences should be enaployed when the corner precedes 
(follows) the point i. The finite difference expressions for the evaluation of 
O(~/Ot. for forward and backward differences will be derived next. 

For forward differences we consider the values G ,  0, ~-I and oh,+2. The Taylor se- 
ries approximations of ~/5,+1 and G+~ in terms of the value of (~ and its derivatives 
at point i give 

1 ,, 1 ((~b ....... ), ,,~i I 
r +' - r + ('/"")' '~' + 2 ( ~/' ..... )' '~ + ~ + 

1 )~ 1 r - r + (r ( .~ , + < ) + - ( , / ,  ..... ) ( .~ , + ,~,e + - ( ~ ....... ), ( .~ , + ,~,e ) : ' + . . .  
2 (i 

Neglecting the terms of order higher than the second, the above equations yield 

(vS,~ ), - (6.52) 

where 

(u : 
2S 1 + $2 SI -a t. S 2 S 1 

, ( t 2  ~ , ( t 3  - - - _  

'41 ('qI + '42 ) "41"42 ,~(,~,, + ~,,) 
(6.53) 

S1 --- gi-~- g i+l and s2 = gi+l + g,+~ 
2 2 

For backward differences we consider the values r ~5,_1, ~5i and following an 
analogous procedure, we obtain 
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- -  - -  OL1 r  -+- OL2 r  @ OL3 r  (r - -~i  

2sa + s2 81 .qu 82 
Og 1 -- ~ OL2 ~ ~ 0~3 

81(81 + 82) 8182 

gi-~- gi-1 gi-1 + gi-2 sl = and s2 = 
2 2 

82 (Sl + 82) 

(6.54) 

(6.55) 

6.2.3 Program T O R S C O N  for solving the torsion problem with 
constant elements 

The program LABECON can be readily modified to solve the torsion problem. 
Besides the main program, the subroutines that are modified are: INPUT, IAINTER 
and OUTPUT. Moreover, three new subroutines have been added, namely, 
TORCENTER, TORSTIF and TORSTRESS, which compute the center of  twist of  
the cross-section, the torsion constant It,  and the boundary stress "rtz, respectively. 
The listings o f  the main program and the modified subroutines as well as the new 
subroutines are given below. 

:::::::::::::::::::::::::::: 

C 
PROGRAM TORSCON 

C 
C 
C This program solves the Saint-Venant TORSION problem 
C as a Neumann problem for the Laplace equation using 
C the boundary element method with (CON) stant 
C boundary elements 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER*I5 INPUTFILE,OUTPUTFILE 

Set the maximum dimensions 

PARAMETER (N-20) 
PARAMETER (IN-13) 

C 
C N= Number of boundary elelments equal to number of boundary 
C nodes 
C IN- Number of internal points where the function u is calculated 

C 
DIMENSION INDEX (N) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N), G (N, N), H (N, N), UB (N) 
DIMENSION A (N,N) , UNB (N) , XIN (IN+I) ,YIN(IN+I) , UIN(IN+I), SL (N) ,TTZ (N) 
DIMENSION AA ( 3,3 ), BB ( 3 ) 

C 
C Read the names and open the input and output files 

C 
WRITE (*, ' (A) ') ' Name of the INPUTFILE (max. 15 characters) ' 
READ (*,' (A) ' ) INPUTFILE 
WRITE (*, ' (A) ' ) ' Name of the OUTPUTFILE (max.15 characters) ' 
READ (*, ' (A) ') OUTPUTFILE 
OPEN (i, FILE=INPUTFILE) 
OPEN (2, FILE=OUTPUTFILE) 



158 BOUNDARY ELEMENTS 

C Read data from INPUTFILE 

C 
CALL INPUT (XL, YL, XIN, YIN, INDEX, UB , N, IN) 

C 
C Compute the G matrix 

C 
CALL GMATR (XI~, YL, XM, YM, G, N) 

C 
C Compute the H matrix 

C 
CALL HMATR (XL, YL, XM, YM, H, N) 

C 
C Form the system of equations AX=B 

C 
CALL ABMATR (G,H,A,UNB,UB, INDEX,N) 

C 
C Solve the system of equations 

C 
CALL SOLVEQ (A, UNB, N, LSING) 

C 
C Form the vectors U and UN of all the bounday values 

C 
CALL REORDER (UB, UNB, INDEX, N) 

C 
C Compute the coordinates of the twist center of the 
C cross-section and the Neumann's problem constant 

C 
CALL TORCENTER (XL, YL , N, UB, UNB , AA, BB , XTC , YTC , CT) 

C 
C Compute the values of U at the internal points 

C 
CALL UINTER (XL , YL , XM, YM, XIN, YIN, UB , UNB, UIN, N , IN, XTC, YTC , CT ) 

C 
C Compute the the torsion constant D 

C 
CALL TORSTIF (XL, YL , N, UB , XTC, YTC, D) 

C 
C Compute the boundary stress Ttz 

C 
CALL TORSTRESS (XL, YL, XM, YM, UB, XTC, YTC, TTZ , SL, N) 

C 
C Print the results in the OUTPUTFILE 

C 
CALL OUTPUT (XM,YM,UB,UNB,XIN,YIN,UIN,D,TTZ,N, IN,XTC,YTC,CT) 

C 
C Close input and output files 

C 
CLOSE ( 1 ) 
CLOSE ( 2 ) 
STOP 
END 

C 
C 

C 
SUBROUTINE INPUT (XL,YL,XIN,YIN, INDEX,UB,N, IN) 

C 
C 
C This subroutine reads the data from the input file 
C and writes them in the output file 

C 
IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER* 8 0 NAME, TITLE 
DIMENSION XL (N+I), YL (N+I), XIN ( IN), YIN ( IN), INDEX (N), UB (N) 

C 
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WRITE (2, i00) 
100 FORMAT ( ' ', 69 ( ' * ' ) ) 

C 
C Read user' s name 
C 

READ(I,' (A) ' )NAME 
C 

WRITE (2,' (A) ' )NAME 
C 
C Read the title of the program 
C 

READ (I,' (A) ' )TITLE 

WRITE (2, ' (A) ' ) TITLE 

WRITE (2,200)N, IN 
200 FORMAT (//' BASIC PARAMETERS'//2X, 'NUMBER OF BOUNDARY ELEMENTS=' 

I,I3/2X, 'NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED 
I= ' , I3 ) 

C 
C Read the coordinates XL,YL of the extreme points of the boundary elements 
C 

READ(I,*) (XL (I) ,YL (I) , I=I,N) 
C 
C Write the coordinates in the output file 
C 

WRITE (2,300) 
300 FORMAT(//2X, 'COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELE 

IMENTS',//2X, 'POINT' ,9X, 'XL' ,15X, 'YL') 
DO 20 I=I,N 

20 WRITE(2,400) I,XL(I),YL(I) 
400 FORMAT (2X, I3,2 (3X, El4.5) ) 

C 
C Compute the boundary values of Un and store in UB(I) (I=I,N-I),UB(N)=0. 
C 

DO i0 I=I,N-I 
DX-XL (I+l) -XL ( I ) 
DY=YL (I+l) -YL ( I ) 
SL=DSQRT (DX**2+DY**2) 
ENX-DY/SL 
ENY- -DX/SL 
XM= (XL (I) +XL (I+l))/2. 
YM= (YL (I) +YL (I+l))/2. 
UB (I) =YM*ENX-XM*ENY 

i0 INDEX (I) =i 
UB(N) =0. 
INDEX (N) =0 

C 
C Write the boundary conditions in the output file 
C 

WRITE (2 , 500) 
500 FORMAT (//2X, ' BOUNDARY CONDITIONS'//2X, ' NODE' , 6X, ' INDEX' , 

1 7X, ' PRESCRIBED VALUE' ) 
DO 30 I-I,N . 

30 WRITE(2,600) I,INDEX(I) ,UB(I) 
600 FORMAT (2X, I3,9X, Ii, 8X, El4.5) 

C 
C Read the coordinates of the internal points 
C 

READ(I,*) (XIN(I) ,YIN(I), I=l, IN) 
RETURN 
END 

C 
C 
C= �9 --- 
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C 
SUBROUTINE TORCENTER (XL, YL, N, UB, UNB, AA, BB, XTC, YTC, CT) 

C 
C 
C This subroutine computes the coordinates of the twist 
C center of the cross-section and the arbitrary constant 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION XL(N+I),YL(N+I),UB(N),UNB(N) 
DIMENSION XC(4) ,YC(4) ,XI (4) ,WG(4) 
DIMENSION AA(3,3) ,BB(3) 

C 
c N - Number of boundary elements 
C XL,YL - Coordinates of the extreme points of the 
C boundary elements 
C XTC,YTC = Coordinates of the twist center 
C CT - Arbitrary constant of the Neumann problem 
C WG = Weights of the Gauss integration 
C XI - Coordinates of the Gauss integration points 
C in the interval [-1, i] 
C XC,YC = Global coordinates of the Gauss integration points 
C 

DATA XI/-0. 86113631, -0. 33998104,0. 33998104,0. 86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
PI-ACOS ( -I. ) 
XL (N+I) =XL (I) 
YL (N+I) =YL (i) 

C 
AREA= 0. 
SX=O. 
SY=0. 
AIX=0. 
AIY=0. 
AIXY=0. 
AII=0. 
AI2=0. 
AI3=0. 

DO I0 I=I,N 
AX= (XL (I+l) -XL (I))/2. 
AY= (YL (I+l) -YL (I))/2. 
BX- (XL (I+l) +XL (I))/2. 
BY= (YL (I+l) +YL (I))/2. 
SL=DSQRT (AX**2+AY**2) 
ENX--AY/SL 
ENY,,-AX/SL 
TERMA= 0. 
TERMSX = 0. 
TERMSY- 0. 
TERMIX= 0. 
TERMIY= 0. 
TERMIXY= 0. 
TERMI 1 = 0. 
TERMI 2- 0. 
TERMI 3 = 0. 

DO 40 K=I,4 
XC (K) =AX*XI (K) +BX 
YC (K) =AY*XI (K) +BY 
TERMA=TERMA+0.5* (XC (K) *ENX+YC (K) *ENY) *WG (K) *SL 
TERMSX=TERMSX+0.5*YC (K) **2*ENY*WG (K) *SL 
TERMSY=TERMSY+0.5*XC (K) **2*ENX*WG (K) *SL 
TERMIX=TERMIX+I./3. *YC (K) ** 3*ENY*WG (K) *SL 
TERMIY=TERMIY+I./3. *XC (K) **3*ENX*WG (K) *SL 
TERMIXY=TERMIXY+0.25"XC (K) *YC (K) * (XC (K) *ENX+YC (K) *ENY) 

1 *WG (K) *SL 
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UI=(XC(K)**2*YC(K)+YC(K)**3)/8. 
UIN=(2.*XC(K)*YC(K)*ENX+(XC(K)**2+3.*YC(K)**2)*ENY)/8. 

TERMII=TERMII+(UB(I)*UIN-UNB(I)*U1)*WG(K)*SL 
U2= (XC(K) **3+XC(K) *YC(K) **2)/8. 
U2N= ( (3. *XC (K) **2+YC (K) **2) *ENX+2. *XC (K) *YC (K) *ENY)/8. 

TERMI2=TERMI2+ (UB (I) *U2N-UNB (I) *U2) *WG (K) *SL 
U3= (XC (K) **2+YC (K) **2)/4. 
U3N= (XC (K) *ENX+YC (K) *ENY)/2. 

TERMI3=TERMI3+ (UB (I) *U3N-UNB (I) *U3) *WG (K) *SL 
40 CONTINUE 

AREA=AREA+TERMA 
SX-SX+TERMSX 
SY=SY+TERMSY 
AIX=AIX+TERMIX 
AIY=AIY+TERMIY 
AIXY=AIXY+TERMIXY 
AII=AII+TERMII 
AI2=AI2+TERMI2 
AI3=AI3+TERMI3 

I0 CONTINUE 

Coordinates of the twist center and Neumann's constant 

AA(I, I) =AIX 
AA(I, 2) =-AIXY 
AA(I, 3) =-SX 
AA (2, i) =-AIXY 
AA(2,2) =AIY 
AA(2,3) -SY 
AA(3, i) =SX 
AA(3,2) =-SY 
AA ( 3,3 ) ~, -AREA 
BB(1) =-AII 
BB ( 2 ) =AI 2 
BB(3)=-AI3 
CALL LEQS(AA,BB,3,KS) 
XTCzBB(1) 
YTC-BB(2) 
CT=BB(3) 
WRITE(*,*)XTC,YTC,CT 

RETURN 
END 

C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE UINTER ( XL , YL , XM, YM, XIN, YIN, UB , UNB , UIN, N, IN, XTC , YTC , CT) 

This subroutine computes the values of u at the internal points 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL(N+I),YL(N+I),XIN(IN+I),YIN(IN+I) 
DIMENSION UB (N), UNB (N), UIN ( IN+ i), XM (N), YM (N) 

XIN(IN+I)=XTC 
YIN(IN+I)=YTC 

Compute the values of u at the internal points 

DO 10 K= 1, IN+ 1 
UIN (K) =0. 
DO 20 J=I,N 
JPI=J+I 
CALL DALPHA (XIN (K), YIN (K), XL (J), YL (J), XL (JPI), YL (JPI), RESH) 
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CALL RLINTC (XIN (K) ,YIN(K) ,XL (J) ,YL (J) ,XL (JPI) ,YL (JPI), RESG) 
20 UIN(K) =UIN(K) +RESH*UB (J) -RESG*UNB (J) 
i0 CONTINUE 

DO 30 K=I,N 
DX=XL (K+I) -XL (K) 
DY=YL (K+I) -YL (K) 
SL-DSQRT (DX* * 2 +DY* *2 ) 
ENX=DY/SL 
~ . N Y =  - D X / S L  

UB (K) --UB (K) -YTC*XM (K) +XTC*YM (K) -CT 
UNB (K) =UNB (K) -YTC*ENX+XTC*ENY 

30 CONTINUE 

DO 40 K=I,IN+I 
UIN (K) =UIN (K) -YTC*XIN (K) +XTC*YIN (K) -CT 

40 CONTINUE 
RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::: -- 

C 
SUBROUTINE TORSTIF (XL, YL, N, UB, XTC, YTC, D) 

C 
C 
C This subroutine computes the torsion constant 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I) ,YL (N+I) ,UB (N) 
DIMENSION XC(4) ,YC(4) ,XI (4) ,WG(4) 

C 
C N = Number of boundary elements 
C XL,YL = Coordinates of the extreme points of the boundary elements 
C D = Torsion constant 
C WG = Weights of the Gauss integration 
C XI = Coordinates of the Gauss integration points in the 
C interval [-1, 1] 
C XC,YC = Global coordinates of the Gauss integration points 
C 

DATA XI/-0. 86113631, -0. 33998104,0. 33998104,0. 86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
XL (N+I) =XL (I) 
YL (N+I) =YL (I) 
D-0. 

DO I0 I=I,N 
AX= (XL (I+l) -XL (I))/2. 
AY- (YL (I+l) -YL (I))/2. 
BX= (XL (I+l) +XL (I))/2. 
BY= (YL (I+l) +YL (I))/2. 
SL-DSQRT (AX* * 2 +AY* * 2 ) 
ENX =AY / SL 
E N Y  = - A X  / S L 

TERM= 0. 
DO 40 K=I,4 
XC (K) =AX*XI (K) +BX-XTC 
YC (K) =AY*XI (K) +BY-YTC 
TERM=TERM+WG (K) * ( (XC (K) *YC (K) **2-YC (K) *UB (I)) *ENX 

1 + (YC (K) *XC (K) **2+XC (K) *UB (I)) *ENY) *SL 
40 CONTINUE 

D=D+TERM 
I0 CONTINUE 

RETURN 
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END 
C 
C 
C 

SUBROUTINE TORSTRESS (XL , YL , XM, YM, UB , XTC , YTC, TTZ , SL , N) 

This subroutine computers the boundary shear stress ~tz 
in the tangential direction 

TTZ = Shear stresses at the boundary nodal points 
SL = Distances between the boundary nodal points 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N) 
DIMENSION TTZ (N), SL (N), UB (N) 

XL (N+I) =XL (i) 
YL (N+I) -YL (I) 
DO 10 I=l, N 
AX= (XL (I+l) -XL (I))/2. 
AY= (YL (I+l) -YL (I))/2. 
SL (I) =DSQRT (AX**2+AY**2) 

10 CONTINUE 

DO 20 I=I,N 
AX= (XL (I+l) -XL (I))/2. 
AY- (YL (I+l) -YL (I))/2 
SSL=DSQRT (AX* * 2 +AY* * 2 ) 
ENX=AY/SSL 
ENY=-AX/SSL 

IF (I. EQ. I) THEN 
SI=SL (N) +SL (i) 
S2=SL (I) +SL (I+l) 
BI=UB (N) 
B2=UB (i) 
B3=UB (2) 
ELSE IF (I. EQ.N) THEN 
SI=SL (N-l) +SL (N) 
S2=SL (N) +SL (i) 
BI=UB (N- 1 ) 
B2=UB (N) 
B3=UB (I) 
ELSE 
SI-SL (I-l) +SL (I) 
S2=SL (I) +SL (I+l) 
BI=UB (X-l) 
B2=UB (I) 
B3=UB (I+l) 
ENDIF 
UBT= (SI**2*B3-S2**2*BI+ (S2"'2-SI*'2) *B2) 

1 / (SI*S2* (SI+S2)) 
TTZ (I) =UBT+ (XM(I) -XTC) *ENX+ (YM(I) -YTC) *ENY 

20 CONTINUE 
RETURN 
END 

C 
C 
C=_---==--=-_-====- ......... ========================================= 
C 

SUBROUTINE OUTPUT (XM, YM, UB , UNB , XIN, YIN, UIN, D , TTZ , N, IN, XTC , YTC , CT) 

C 
C 
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C This subroutine prints the results in the outputfile. 

C 
IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XM (N), YM (N), UB (N) , UNB (N) 
DIMENSION XIN ( IN+I), YIN ( IN+I), UIN ( IN+I), TTZ (N) 

WRITE (2, I00) 
I00 FORMAT ( ' ', 69 ( ' * ' )//iX, 'RESULTS'//2X, 'BOUNDARY NODES'// 

1 1IX, 'X', 15X, 'Y' , 15X, 'U' , 14X, 'Un'/) 

DO I0 I=I,N 
I0 WRITE(2,200) XM(I),YM(I),UB(I),UNB(I) 

200 FORMAT(4 (2X,EI4.5)) 

WRITE (2,900) 
900 FORMAT(/' ' , 69 ( ' *' )//3X, 'COORDINATES OF THE TWIST CENTER' , 

1 ' AND ARBITRARY CONSTANT '/) 
WRITE (2,950) XTC, YTC, CT 

950 FORMAT (3X, 'XTC=' ,EII.5,2X, 'YTC=' ,Eli.5,1IX, 'C=' ,Eli.5) 

WRITE (2,500) 

WRITE (2,300) 
300 FORMAT(/, 2X, ' INTERNAL POINTS'//10X, 'X' , 15X, 'Y' , llX, 

1 ' SOLUTION U'/) 
DO 20 K=I,IN 

20 WRITE (2,400) XIN (K), YIN (K), UIN(K) 
400 FORMAT (3 (2X, El4.5) ) 

WRITE (2,600) D 
600 FORMAT(/, '' ,69('*')//2X, 'TORSION CONSTANT D-' ,Eli.5/) 

WRITE (2,700) 
700 FORMAT(' ', 69 ( ' *' ) //2X, 'BOUNDARY STRESS Ttz'// 

1 1IX, 'X', 15X, 'Y', 13X, 'Ttz'/) 
DO 30 I-I,N 

30 WRITE(2,800) XM(I),YM(I),TTZ(I) 
800 FORMAT(3 (2X,EI4.5)) 

WRITE (2,500) 
500 FORMAT (/, ' ', 69 ( ' * ' ) ) 

RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::: 

Example  6.1 

In this example the program TORSCON is employed to solve the torsion problem 
for a bar of  elliptic cross-section with semi-axes a = 5.0 and b = 3.0.  The bound- 
ary is discretized into N unequal constant elements as in Example 4.2. The coordi- 
nates o f  the extreme points are computed from the relations 

x i  - -  a c o s  Oi and y i  - b s i n  Oi 

where 

0, - - 0/2 + 1)zx0,  - 2 " / x  - 1, 2 , . . . ,  N )  

The coordinates of  the internal points, which are located on concentric ellipses, are 
computed from the relations 
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xk -- a~ cos Oj and Yk -- b~ sin Oj 

k - ( i - 1 ) N 2 + j  

a, - i A a ,  A a - a / ( N l + l )  (i  - 1 ,2 , . . . ,N1)  

b~ - i A b ,  A b  - b / ( N l  + l )  (i  - 1 ,2 , . . . ,N1)  

0 j - - ( j - 1 ) A 0 ,  A 0 - 2 7 r / N 2  ( j  - 1 ,2 , . . . ,N2)  

in which N1 denotes the number of internal concentric ellipses and N2 the number 
of points on each of the ellipses. 

The analytical solution yields [1] 

b 2 - a 2 7ra:~b '~ "rt~ 2~/b ' lx  2 + a~ly 2 
r --  a2 + b2 x y ,  It  - a2 + b 2  ' GO a 2 + b 2 

The data file, which has been produced using program ELLIPSE-3.FOR, and the 
results of programTORSCON for N - 2 0 ,  N I - 1  and N 2 - 1 2  ( I N - 1 2 )  are 
presented below. 

J.T. Katsikadelis 
Example 6.1 

EXAMPLE 6.1 (DATA) 

2.5000000 .0000000 
2.1650635 .7500000 
1.2500000 1.2990381 

4.9384417 -.4693034 
4.9384417 .4693034 
4.4550326 1.3619715 
3.5355339 2.1213203 
2.2699525 2.6730196 
�9 7821723 2.9630650 

-.7821723 2.9630650 
-2.2699525 2.6730196 
-3.5355339 2.1213203 
-4.4550326 1.3619715 
-4.9384417 .4693034 
-4.9384417 -.4693034 
-4.4550326 -1.3619715 
-3.5355339 -2.1213203 
-2.2699525 -2.6730196 
-.7821723 -2.9630650 
.7821723 -2.9630650 

2.2699525 -2.6730196 
3.5355339 -2.1213203 
4.4550326 -1.3619715 
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.0000000 1.5000000 
-1.2500000 1.2990381 
-2.1650635 .7500000 
-2.5000000 .0000000 
-2.1650635 -.7500000 
-1.2500000 -1.2990381 

.0000000 -1.5000000 
1.2500000 -1.2990381 
2.1650635 -.7500000 
.0000000 .0000000 

EXAMPLE 6.1 (RESULTS) 

********************************************************************* 

J.T. Katsikadelis 
Example 6.1 

BASIC PARAMETERS 

NUMBER OF BOUNDARY ELEMENTS= 20 
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 13 

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS 

POINT XL YL 
1 .49384E+01 -.46930E+00 
2 .49384E+01 .46930E+00 
3 .44550E+01 .13620E+01 
4 .35355E+01 .21213E+01 
5 .22700E+01 .26730E+01 
6 .78217E+00 .29631E+01 
7 -.78217E+00 .29631E+01 
8 -.22700E+01 .26730E+01 
9 -.35355E+01 .21213E+01 

i0 -.44550E+01 .13620E+01 
II -.49384E+01 .46930E+00 
12 -.49384E+01 -.46930E+00 
13 -.44550E+01 -.13620E+01 
14 -.35355E+01 -.21213E+01 
15 -.22700E+01 -.26730E+01 
16 -.78217E+00 -.29631E+01 
17 .78217E+00 -.29631E+01 
18 .22700E+01 -.26730E+01 
19 .35355E+01 -.21213E+01 
20 .44550E+01 -.13620E+01 

BOUNDARY CONDITIONS 

NODE INDEX PRESCRIBED VALUE 
1 1 .00000E+00 
2 1 -.14314E+01 
3 1 -.19716E+01 
4 1 -.17030E+01 
5 1 -.95863E+00 
6 1 .00000E§ 
7 1 .95863E+00 
8 1 .17030E+01 
9 1 .19716E+01 

I0 1 .14314E+01 
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11 1 .00000E+00 
12 1 -.14314E+01 
13 1 -.19716E+01 
14 1 -.17030E+01 
15 1 -.95863E+00 
16 1 .00000E+00 
17 1 .95863E+00 
18 1 .17030E+01 
19 1 .19716E+01 
20 0 .00000E+00 

The system has been solved regularly 

RESULTS 

BOUNDARY NODES 

X Y U Un 

.49384E+01 .00000E+00 .44409E-15 -.24373E-16 

.46967E+01 .91564E+00 -.19551E+01 -.14314E+01 

.39953E+01 .17416E+01 -.31820E+01 -.19716E+01 

.29027E+01 .23972E§ -.31957E+01 -.17030E§ 

.15261E+01 .28180E+01 -.19795E+01 -.95863E+00 

.00000E+00 .29631E+01 -.11102E-14 .12682E-15 

.15261E+01 .28180E+01 .19795E+01 .95863E+00 

.29027E+01 .23972E+01 .31957E+01 .17030E+01 

.39953E§ .17416E+01 .31820E+01 .19716E+01 

.46967E+01 .91564E+00 .19551E+01 .14314E+01 

.49384E+01 .00000E+00 -.11102E-14 .24373E-16 

.46967E+01 -.91564E+00 -.19551E+01 -.14314E+01 

.39953E+01 -.17416E+01 -.31820E+01 -.19716E§ 

.29027E+01 -.23972E+01 -.31957E+01 -.17030E+01 

.15261E+01 -.28180E+01 -.19795E+01 -.95863E+00 

.00000E+00 -.29631E+01 -.24425E-14 -.12682E-15 

.15261E+01 -.28180E+01 .19795E+01 .95863E+00 

.29027E+01 -.23972E+01 .31957E+01 .17030E+01 

.39953E+01 -.17416E+01 .31820E+01 .19716E§ 

.46967E+01 -.91564E+00 .19551E+01 .14314E+01 

COORDINATES OF THE TWIST CENTER AND ARBITRARY CONSTANT 

XTC= .12682E-15 YTC= .24373E-16 C=-.19551E+01 

INTERNAL POINTS 

X Y SOLUTION U 

.25000E+01 .00000E+00 -.44409E-15 

.21651E+01 .75000E+00 -.73446E+00 

.12500E+01 .12990E+01 -.73517E+00 

.00000E+00 .15000E+01 -.22204E-15 
-.12500E+01 .12990E+01 .73517E+00 
-.21651E+01 .75000E+00 .73446E+00 
-.25000E+01 .00000E+00 -.88818E-15 
-.21651E+01 -.75000E+00 -.73446E+00 
-.12500E+01 -.12990E+01 -.73517E+00 
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.00000E+00 -.15000E+01 -.88818E-15 

.12500E+01 -.12990E+01 .73517E+00 

.21651E+01 -.75000E+00 .73446E+00 

.00000E+00 .00000E+00 -.88818E-15 

TORSION CONSTANT D= .30472E+03 

BOUNDARY STRESS Ttz 

X Y Ttz 

.49384E+01 .00000E+00 .29371E+01 

.46967E+01 .91564E+00 .29825E+01 

.39953E+01 .17416E+01 .32838E+01 

.29027E+01 .23972E+01 .37469E+01 

.15261E+01 .28180E+01 .41137E+01 

.00000E+00 .29631E+01 .42484E+01 

.15261E+01 .28180E+01 .41137E+01 

.29027E+01 .23972E+01 .37469E+01 

.39953E+01 .17416E+01 .32838E+01 

.46967E+01 .91564E+00 .29825E+01 

.49384E+01 .00000E+00 .29371E+01 

.46967E+01 -.91564E+00 .29825E+01 

.39953E+01 -.17416E+01 .32838E+01 

.29027E+01 -.23972E+01 .37469E+01 

.15261E+01 -.28180E+01 .41137E+01 

.00000E+00 -.29631E+01 .42484E+01 

.15261E+01 -.28180E+01 .41137E+01 

.29027E+01 -.23972E+01 .37469E+01 

.39953E+01 -.17416E+01 .32838E+01 

.46967E+01 -.91564E+00 .29825E+01 

Figure 6.3 Contours of the warping function in a bar of elliptic cross-section. 
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Table 6.1 presents the computed values for several quantities of the elliptic cross- 
section for various values of N and also helps to draw conclusions about the 
accuracy of BEM. Moreover, Fig. 6.3 shows the contours of the warping surface 
r = w/O. 

Table 6.1 Computed values of r  7tz/GO and It in a bar of elliptic cross- 
section for various values of N .  

Point 
x , y  

Number of boundary elements, N 

20 60 100 160 220 300 
Exact 

Values of r at internal points 

2.1651, 
0.7500 

1.2500, 

1.2990 

0.7345 

0.7352 

-0.7607 

-0.7607 

-0.7629 

-0.7629 

-0.7636 

-0.7637 

-0.7639 

-0.7639 

-0.7640 

-0.7640 

-0.7641 
.... 

-0.7641 

Values of Ttz/GO at boundary nodes 

5.0000, 
0.0000 

0.0000, 

3.0000 

2.9371 

4.2484 

2.6846 

4.3930 

2.6608 

4.4050 

2.6525 

4.4091 

2.6499 

4.4104 

2.6486 

4.4110 

2.6471 

4.4118 

Values of It 

I I I [  1, 91 I 

Example 6.2 

The program TORSCON is used to solve the torsion problem for a bar with square 
cross-section of side a = 4.0. The values of It and I~ax't-t:/GO are computed for 
various values of N and are listed in Table 6.2. The data file is constructed for 
each case of discretization with program RECT-3.FOR. The warping function 
r = w/0 is shown in Fig. 6.4 and Fig. 6.5. The exact values have been computed 
from the analytical expressions derived for the rectangular cross-section a x b [1] 

It 1 :~b - -  - a  

3 
n~b 7) 

m ~ x  Ttz 

GO 
= a  2 E 

7[ n = 1 , 3 , 5  .... TL 2 C O S B  
nTrb 
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Figure 6.4 Warping function 4~ - w/O for a bar of  square cross-section. 

Figure  6.5 Contours of the warping function in a bar of  square cross-section. 
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Table 6.2 Computed values of It and max  "rtz/GO in a bar of 
square cross-section for various values of N .  

Boundary 
elements, N It max "rtz/ GO 

20 35.718 2.6186 

60 35.979 2.6938 

100 35.988 2.6988 

140 35.989 2.7010 

220 35.989 2.7010 

Exact value 35.990 2.7010 

6.2.4 Torsion ofanisotropic bars 

Let us consider a bar of non-circular cross-section. It consists of an anisotropic 
material having one plane of material property symmetry, which is perpendicular to 
the z -ax i s  of the bar (see Fig. 6.1). This means that through any point of the bar 
passes a plane normal to the z--axis with the property that any two directions sym- 
metric with respect to this plane are directions of material property symmetry. Such 
a material is termed monoclinic and there are 13 independent elastic constants for 
this material instead of 21. In this case, the generalized I-looke's law valid for the 
general anisotropic body may be simplified and be expressed by the following six 
relations [6] 

Gx - - -  CIVIl O':r -~- (/~12 (7" 9 _Jr_ (t13 O'z -a t- (t16 Txy 

s - - -  (/~12 O'x + (t22 (7 9 + (t23 Oz -~ (t26 Txy 

Gz = -  (/'13 (7":r + 0'23 O'g + (//33 (7"2 -~ (/J36 T:ry 

")/yz = Ct44 Tyz -t- (t45 Tzz 

"/xz = Ct45 Tyz + (t55 Tzz 

")/zy. = C[16 O'z -~- C~2( i CTg -~- (t36 (7"z + (-~(i6 Txy 

(6.56) 

Introducing the strain-displacement equations, Eqs. (6.3), into the above constitu- 
tive relations, we find 

cr~ = ~ry = crz = r~:,j = 0 (6.57) 
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and 

0r 
c~.sn 7~z + c~45 Tuz - 0 ~ x -  y 

c~45 7-= + c~44 7-yz - 0 ~ + x 

(6.58) 

Equations (6.58)are solved for 7-~z and "ru-- yielding 

~ ]l T x z  - -  ~ Ct44 ~ y  -~- X 
Io~1 ~ -  y --  ct4'5 

(6.59a) 

7uz-- - -ct4,~ - y  +c~55 + x  (6.59b) 

where 

Ictl - -  (let[ (1( l -- 
(1(55 6t.15 

(LI5 (1: ,1 . !  

2 (6.60) 
- -  ( 1 ( . 1 . 1  ( / ( 5 5  - -  (~45 

Introducing Eqs. (6.57) and (6.59) into the equilibrium equations (6.5) and the 
boundary conditions (6.7), we arrive at following boundary value problem for the 

warping function r 

0~r 0~r 
(-7.11 ~ -  2/74.,-, +/Tr,~ 

O:r ~ 0:-~,Oy " 

0'2r 
Oy 2 

= ( )  in f~ (6.61) 

V r  on F (6.62) 

where 

(6.63) 

- -  a 4 . 1  - -  ( / , . 1 5  m ( / , 5 5  
a44 - ~ ,  (-/',15 - -  ~ ,  a 5 5  - -  

4TN ~ ,/,al 

m being a vector in the direction of the connomlal to the boundary. Eq. (6.61) 
along with the boundary condition (6.62) allow the determination of the warping 
function r  Equation (6.61) is of the form of Eq. (3.56) and can be solved 
using BEM as it was presented in Section 3.6. 

The twisting moment at the end cross-sections is 

Mt - f ~  ( xT~z - y~-~z ) d f~ - G L O (6.64) 
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where 

1 
G =  

-,/I al 

is a constant having'the same dimensions as the shear modulus, and 

It  - f~  [~55 x 2 + 2/7+~ xy  + 544 y2 

(6.65) 

or or - (~,~ ~ + ~ ~ ) ~  + (~5,~ ~ + ~,~ ~ ) ~  df~ (6.66) 

The latter may be converted to a line integral on the boundary taking the form 

It - f r  {[~44 (xY 2 -- Y r  ~--~45 ( l x 2 y  -- Xr 

+ [ ~.~ ( ~  + x , )+  ~,~ (~x~ ~ + ~,)],,~ )~, (6.67) 

For orthotropic materials, it is a l t  i - -  a 2 ~  i - -  a 3 6  - -  ( L , 1 5  - -  0 and the foregoing equa- 
tions become 

or 

or 
"ru.. - OG:j: ~ + x 

(6.68) 

C~- 02r  + C,,: 0~r  - 
0:r--- 7 . ~ - 0  (6.69) 

E m 

m - G~: n~: i + G:. nu j (6.70) 

/ ,  - f ,  
( o~) x + : z : ~  

Oy 
dr2 

where 

1 1 
Gxz = ~ ,  Gyz = 

(~55 0~44 

G -  ~/GxzGyz 

(6.71) 

(6.72) 

(6.73) 
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G~z - a-44 - - Gx----L~ , (~yz - g-5.5 - Gyz (6.74) 
G G 

are the non-dimensionalized shear moduli in the xz and yz planes, respectively. 

6.3 Deflection of elastic membranes 

We consider a flat elastic membrane of uniform thickness h occupying the two- 
dimensional multiply connected domain f2 of the xy-p lane  bounded by K + 1 
curves (see Fig. 6.6). The membrane is fixed or elastically supported along its 

I..J~=0 Fi and subjected to a uniform tension S ,  which is large boundary F -  i=u 
enough so that it is not appreciably altered when the membrane is deflected by a 
distributed load f(x, y). 

Figure 6.6 Elastic membrane occupying the multiply 
connected domain ~ .  

The equilibrium equation of the deflected membrane can be derived by considering 
the equilibrium of a deflected element dr2 = dxdy. Here, however, it will be 
derived using an energy approach, because it allows a better understanding of the 
linearization of the problem. 

The initial flat membrane is deflected to a surface w(x,y) when subjected to a 
transverse load of density f (x ,y) .  Due to the lateral defection the prestressed 
membrane is further stretched and additional strains are produced in its middle 
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surface. The linear deflection theory of membranes is based on the following 
assumptions: 

(a) The prestress of the membrane is large enough so that the tension S remains 
unchanged during the deflection. 

(b) The additional strains of the middle surface of the membrane due to its elastic 
in-plane deformation (u(x,y) and v(x,y)) are negligible compared to those 
due to the deflection w(x, y) of the middle surface. 

The second assumption implies that the strain components are given as 

c~ - - - + -  ~ (6.75a) 

E'y --"  v+l( w)21 0w/2 
(6.75b) 

")/:ry -- Ov + Ou_t Ow Ow Ow Ow . . . .  ~ (6.75c) 
Ox Oy Ox Oy Ox Oy 

The strain energy of the deflected membrane is written as 

h f(  ) 
2 

(6.76) 

or taking into account that hcr~ - hc~y - S and 7-~-,j - 0 and using Eqs. (6.75), we 
arrive at 

u - s  f_  
2 

(~ 2-~z +[-0--~y~ d~ (6.77) 

Thus, the total potential energy of the deflected membrane becomes 

( Ow )2 }2 +(O'w 
- f w  d~ 

1 k(s)w 2 - R(s)w 2 ds (6.78) 

where k(s) is the stiffness modulus of the elastic support and R(s) is the density 
of the externally applied transverse load along the boundary. The equilibrium equa- 
tion and the accompanying boundary condition are produced by applying the total 
potential energy principle, i.e. 6 V ( w ) -  0. Using operations of the calculus of 
variations and integration by parts, we can easily derive from Eq. (6.78) the fol- 
lowing boundary value problem 
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5 ' V 2 w - - f  in ~ ~[ 

f /31w 4- fl2q - / 33  on F 
(6.79) 

where /31 = k(s), /32 = S ,  /33 = R(s);  q = Ow/On is the derivative of w along 
the direction normal to the boundary. 

Consequently, the problem of determining the deflection surface of an elastic 
membrane is reduced to the problem of solving Poisson's equation under Robin's 
boundary condition. Note that for k(s) ~ oo, the boundary condition of Eq. (6.79) 
becomes w = 0, namely, the Dirichlet boundary condition. 

Example 6.3 

Determine the deflection surface of an elastic membrane having the shape of an 
equilateral triangle with side length a - 5.0 m. The membrane is fixed along its 
boundary and is subjected to a uniformly distributed load f - 10 kN/m 2 and a ten- 
sion S = 1 kN/m. The coordinate axes are taken as shown in Fig. 6.7. 

Figure 6.7 Triangular membrane. 

The deflection w(x, y) of the membrane is set as 

~- ~J0 4- 'Wl 

where w0 is the solution of the homogeneous equation and wl is a particular 
solution. 
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(i) Particular solution wl 

The particular solution is established by transforming Eq. (6.79) into the complex 
domain as it was described in Section 3.4.2 and applying Eq. (3.42). Thus, we find 

Wl --- 
10 2 

(ii) Homogeneous solution Wo 

The homogeneous solution will be obtained from the following boundary value 
problem 

K72w0 = 0  in f~ 

10 
(x,y) c r 

using the program LABECON. 

The analytical solution is [1] 

w - -  Z_ 
2S 

1 T2 2 +,)  1 :~ 1 

F i g u r e  6.8 Deflection surface of the triangular membrane. 
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The computed deflections at five internal points along with the corresponding val- 
ues of the exact solution are giv.en in Table 6.3. Moreover, the computed deflection 
surface is presented in Fig. 6.8 using contours. 

Table 6.3 Deflections w(0, y) of the triangular membrane on the section 
z - 0 for various values of N .  

-0.7217 

0.0000 

0.7217 

1.4434 

2.1651 

30 

5.4550 

6.9743 

5.8895 

3.5043 

1.1159 

Number of boundary elements, N 

60 

5.4323 

6.9514 

5.8663 

3.4793 

1.0933 

90 

5.4284 

6.9475 

5.8624 

4.4753 

1.0883 

150 

5.4264 

6.9455 

5.8604 

3.4733 

1.0862 

210 

5.4259 

6.9450 

5.8599 

3.4728 

1.0856 

300 

5.4256 

6.9447 

5.8596 

3.4725 

1.0853 

Exact 

5.4253 

6.9444 

5.8524 

3.4722 

1.0851 

6.4 Bending of simply supported plates 
The deflection w(z , y )  of a thin elastic plate occupying the two-dimensional do- 
main f~ of the :r:q-plane satisfies the equation [9] 

V 4 w - f-- (6.80) 
D 

where 

D 
Eh :~ 

1 2 ( 1 -  ,, 2 ) 
is the flexural rigidity of the plate, 

u is the Poisson's ratio, 

h is the constant thickness of the plate, 

f - f(z, y) is the distributed transverse load, and 

02 02 ]2 04 
V 4 _ V  2V 2 -  ~ + ~  = 

Oz 2 Oy 2 Oz 4 
~ + 2 ~  

04 04 
+ ~ is the biharmonic 

Ox20y 2 Oy 4 

operator 

The bending and twisting moments are given by the expressions 

M X  ~ - -  D 

02w 02w + u ~  
Oz 2 072 

(6.81a) 
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[ ~  02w I Mv - - D  02w + u ~  
Oy 2 Ox 2 

(6.81b) 

M ~  - -My~ - D (1 - u) 02w (6.81c) 
OxOy 

For a simply supported plate the deflection must satisfy the following boundary 
conditions on the plate boundary F 

w - 0 (6.82a) 

02w] M~ - - D  02w + u - 0  
On----7 - ~  

(6.82b) 

where M,, is the bending moment in the direction n normal to the boundary and 
t denotes the tangential to the boundary direction. 

Note that for a curvilinear boundary it is [10] 

0'2w 02 w Ow 
= + ~ ~ (6.83) 

Ot 2 Os 2 On 

where ~ - ~(s) is the curvature of the boundary. When the boundary of the simply 
supported plate consists of rectilinear segments, apparently it is 

Ow oO2w 
- 0 ,  w - 0 ,  = 0 ,  = 0  

Os Os '2 

In this case, Eq. (6.83) results in 

02W 
= 0  

Ot 2 

while Eq. (6.82b) reduces to 

02W 
= 0  

On 2 

Consequently, on the basis of the above two equations, the deflection should satisfy 
the following equation on the boundary of the plate 

V2w - 02___~ w + 02w 02w 02w 
On 2 Ot--- T = Ox 2 + ~Oy 2 - 0 on F (6.84) 

For points inside the domain Q, Eqs. (6.81) give 

M~ + My - - D ( I +  u)V2w 
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So, by setting 

M -  M~ + My = - D  V2w (6.85) 
l + u  

we can write Eq. (6.80) as 

which by virtue of Eq. (6.85) may be split into the following two potential equa- 
tions 

V2M = - f  (6.86) 

V 2 w _  M (6.87) 
D 

Equation (6.84) yields M - 0 on the boundary of the plate. Therefore, the solution 
of Eq. (6.80) for a simply supported plate with a polygonal boundary can be ob- 
tained from the following two Dirichlet problems: 

V 2 M - - f  in ~2 "[ 

M - ( )  on F 
(6.88) 

and 

V 2 ' w -  in ~ 
D 

w -  () on F 
(6.89) 

The solution of the plate equation by separating it into two potential equations is 
attributed to Marcus [11]. Its use is limited, because it can treat only simply sup- 
ported plates with a polygonal boundary. For the extension of the method to plates 
with a curvilinear boundary under any type of boundary conditions, the reader is 
referred to the work of Paris and De.Leon [12] or Katsikadelis [13]. Nevertheless, 
the solution of the general plate problem can be obtained by the BEM according to 
the procedure developed for the biharmonic operator [ 13]. 

The solution of Eqs. (6.88) and (6.89) using the BEM requires the evaluation of the 
domain integrals 

f~ vf d~'t and f~  v M df~ 

where v is the fundamental solution of the Laplace equation. The function f is 
known and as a result the first of the above integrals can be evaluated using any of 
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the methods presented in Section (3.5). The function M ,  however, is not given by 
an analytical expression, but by its numerical values at any desired points, which 
can be used to convert it into a boundary line integral employing the Dual Recip- 
rocity Method (DRM) [14] (see also Section 4.5). 

6.5 Heat transfer problems 

The heat transfer equation is derived from the energy conservation principle, and 
its general form is given as [15] 

- V .  q(x, t) + f(x, t) - O(up) (6.90) 
Ot 

where x(x, y, z) E f~ and 

t :  time 

q:  heat flux 

f : rate of internal heat generation due to heat sources 

p:  material density 

u:  specific internal energy 

f2: domain occupied by the body 

For two-dimensional problems, the heat may flow in any direction of the x y -  
plane. This flow is described by the flux vector q,  whose direction is that of the 
heat flow and its magnitude expresses the heat passing per unit time through the 
unit surface normal to the direction of the heat flow. 

According to the generalized Fourier's law, the thermal flux density depends line- 
arly on the gradient of the temperature field. Namely, denoting by T = T(x,y, t)  
the temperature, the flux is expressed as 

q - -  qu 
k .r.r k : r ~  

kyx ky~.j 

0 T 
Oz 

OT 
Ou 

k:l;s 

k~ 

OT + k~ 07" 
Oz "-~y 

OT + kyy OT 
Ox 

(6.91) 

or 

q = - D . V T  (6.92) 

The matrix 
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D ..~ 
kxx kxy 

kyx kyy 
(6.93) 

provides information about the heat transfer in any direction and it is referred to as 
the conductivity matrix. It is the constitutive matrix for the heat transfer problem. 
For non-homogeneous materials, the constitutive matrix depends on the position of 
point x(x, y), that is D = D(x, y). The determinant of the matrix D does not van- 
ish, i.e. 

I DI ~ 0 (6.94) 

In general D is not a symmetric matrix. However, for the simplicity of the expres- 
sions it is assumed here to be symmetric, thus kxy = k:jx. 

If the material is orthotropic, it will be k~y -- kyx = 0 and the matrix D can be 
simplified taking the form 

kxx 0 
D -  0 k:l.v (6.95) 

Moreover, for an isotropic material it is k .... = k:j:j = k and consequently we may 
write 

D = k  
1 (} 

0 1 
(6.96) 

The negative sign in Eq. (6.92) is due to the fact the heat flows from higher to 
lower temperature regions, while the gradient 27 T is directed towards regions of 
higher temperature. 

It is known from thermodynamics that the internal energy depends linearly on the 
temperature 

u = c T(x, t) (6.97) 

where c is the specific heat. 

Taking into account Eqs. (6.92) and (6.97), Eq. (6.90) becomes 

V .  (D. V T) + f - O(cTp) (6.98) 
Ot 

If the material properties, i.e. heat conductivity, specific heat and density, do not 
depend on the temperature, the differential equation (6.98) becomes linear. 

In steady-state heat transfer, that is when the thermal equilibrium has been reached, 
the temperature distribution within the body does not depend anymore on time and 
Eq. (6.98) simplifies to 
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V . ( D . V T ) + f -  0 (6.99) 

Further, when the conductivity matrix is constant, that is it does not depend on 
point x ,  the material is thermally homogeneous and Eq. (6.99) takes the form 

k= - -  0 2 T  + 2k~y ~ 02T  + kyy - -  02T  + f - 0 (6.100) 
Oz 2 OzOy Oy 2 

To solve the heat transfer problem, Eq. (6.100) needs to be solved subject to ap- 
propriate prescribed boundary conditions. These boundary conditions can be of the 
following three types [ 16, 17] 

T - T  on F, 

q ,~ -q~  on F2 

q,~ - - h o ( T  - T,~ ) on F3 

(['1 tA 1-'2 U F:~ - 1-' ) 

(6.101) 

where q,~ = q .  n denotes the projection of the heat flux vector on the normal to 
the boundary, ho represents the heat transfer coefficient and T, the ambient 
temperature outside the body. The first boundary condition is a Dirichlet condition 
or otherwise known as an essential condition. The second is a Neumann condition 
or otherwise known as a natural  condition. The third condition, otherwise known 
as a Robin condition, is a linear relationship between the flux and the temperature 
on the boundary. It is particularly important in heat transfer applications, as it 
represents the convection condition. 

If the material is orthotropic, k~ = 0, Eq. (6.100) becomes 

k~  02T  + k~jy 02T  
Oz--- V . ~ + f - 0 (6.102) 

Finally, if the material is isotropic, i.e. k:~. - k:jy - k ,  Eq. (6.100) and the bound- 
ary conditions become 

k V2T + f - 0 (6.103) 

T = T  on ['1 (6.104a) 

O T  _ 
- k  ~ - q,~ on 1-'2 (6.104b) 

On 

O T  
- k ~  = - h o ( T -  T , )  on F3 (6.104c) 

On 
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As it was previously mentioned, the first two boundary conditions are typical 
Dirichlet and Neumann boundary conditions, respectively, while the third one has 
the form of Eq. (3.6b), namely 

OT 
a T +/3  ~ -  "7 (6.105) 

On 

where a = ho, /3 = - k  and "7 = hoT~. 

For a numerical solution of the problem with BEM, the third boundary condition, 
Eq. (6.104c), is treated as follows�9 Equation (6.105) is applied to all nodal points 
on part F~ of the boundary, which yields 

[a]{T} + [/3]{T,~} = {"7} (6.106) 

where 

- holt], [Z]  - - k [ I ] ,  - ho To  

F1 

1 

1 

1 

(6.107) 

in which [I] is the unit matrix of dimensions N:~ • N:~, where N:~ is the number of 
nodal points on F:~. 

It is apparent that all the types of boundary conditions can be written in the form of 
Eq. (6.106) by specifying appropriately the coefficients c~, /3 and 7 ,  e.g. for the 
Dirichlet condition it is a -  1, / 3 -  0, 7 -  T .  Thus, Eq. (6.106) along with 
Eq. (4.7), which for u - T becomes 

[HI{T} -[G]{T,,} (6.108) 

can be combined into a single equation forming a system of 2N linear algebraic 
equations, which allow the determination of the unknown boundary quantities. 

Example 6.4 

We consider the circular insulated metal heating duct of Fig. 6.9, in which a liquid 
of temperature 300~ flows. We have to determine the temperature distribution 
inside the insulation, when the outside temperature is - 1 5 ~  The thermal con- 
ductivity k is constant. 

The problem can be solved using the BEM for domains with multiple boundaries 
(see Section 4.7). For the problem at hand, however, we can take advantage of the 
symmetry of the domain with respect to both the x and y axes and restrict the 
solution to the A B C D E  quadrant (Fig. 6.10). The symmetry implies zero flux in 
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the directions normal to the cuts AB and El).  All the boundary conditions related 
to the reduced domain are shown in Fig. 6.10. 

Figure 6.9 Insulated circular heating duct. Temperature inside 
T = 300 ~  outside 7' = - 1 5  ~ 

Figure 6.10 Quadrant ABCDE and boundary 
conditions (T,~ = O T/On ). 
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Table 6.4 Computed values of the temperature T and its derivatives 
OT/Ox and OT/On for various values of N.  

Point 
Number of boundary elements, N 

21 41 [ 7 1  I 141 [ 2~1 i 421 
T 

[33.973 34.299 34.278 [34.269 I34.266 134.263 
OT/Ox 

I-6~6.~8 1-660.7~ I-661.~0 !-661.,0 1-661.0~ 1-661.03 
OT/On 

[ 3063.9 [ 3102.6 I 3116.1 ] 3123.7 I 3125.4 [ 3126.8 

0.25 
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I I 1 I 

- - ~  20 ~ _ _  

40 20  . . . . .  - ~ ' ~  ~--~_ 

0.1 

0 .05-  

0.00 , ', . . . . . . . . . . . . .  , . . . . . . . . .  t '  
0.00 0.05 0.10 0.15 0.20 

Figure 6.11 Temperature contours in the quadrant ABCDE. 

0.25 
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The computed values of the temperature T and its derivative O T/Ox at the inter- 
nal point 1 (0.175,0.175), and of the normal derivative OT/On at the boundary 
point 2 ( 0.1-,/-2/2, 0.1-,/-2/2 ) are given in Table 6.4 for various values of the number 
of constant boundary elements (nodal points) N .  Finally, the contour plots of the 
temperature distribution in the insulation are depicted in Fig. 6.11. 

6.6 Fluid flow problems 

An ideal or perfect fluid is one that has zero viscosity and is incompressible. A 
good approximation to the solution of the inviscid (nonviscous) fluid flow problem 
is achieved by satisfying only the continuity equation, which for a two dimensional 
flow is written as [18] 

V.  (pv) + O___pp + f _ 0 ,(6.109) 
Ot 

where p is the density of the fluid, v(vx, vy) the velocity of the fluid at point (x, y) 
and f = f (x, y) the distribution of a possible internal source. When the density is 
constant (incompressible fluid) Eq. (6.109) becomes 

V . v + f /p = 0 (6.110) 

Figure 6.12 Two-dimensional fluid flow. 

Consider the two-dimensional fluid flow of Fig. 6.12. If the flow is irrotational, the 
vorticity is zero and the velocity satisfies the equation ~' 

X 7 x v =  Ovy Ovx ] k - 0 (6.111 ) 
Ox Oy ) 

or, consequently 
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OVy OVx 
Ox Oy 

= 0  

Therefore, a potential function r exists, which produces the velocity field as 

v -  V r  0r  i +  0_.r j (6.112) 
Ox Oy 

and the velocity components are 

or or 
v ~  - -  ~ a n d  v ~  = ~ ( 6 . 1 1 3 )  

Oz Oy 

Obviously, Eq. (6.111) is satisfied identically and Eq. (6.110) is written as 

V . V r  + f /p  - O (6.114) 

o r  

V2r + f /p  - 0 (6.115) 

The solution of the differential equation (6.115) under boundary conditions which 
will be presented next, allows the determination of the potential r  Thereafter, the 
velocity components are obtained from Eqs. (6.113). 

The boundary conditions on the velocity potential may be derived from physical 
considerations. For this purpose, we consider the irrotational and inviscid flow 
inside a part of a pipe, as shown in Fig. 6.12. 

As there is no penetration through the rigid walls AB and DC of the pipe, the 
normal component v,~ of the velocity is zero, 

or 
v,, = = 0 (6.116) 

On 

Along cross-section AD (inlet) the distribution of v,, may be given, namely 

0r _ 

v,~ = = v,, (6.117) 
On 

while at the cross-section BC (outlet) the conditions are: 

(i) The velocity component v,, may be prescribed, but its distribution should sat- 
isfy along with Eqs. (6.116) and (6.117) the mass conservation principle in the 
given domain, namely 

f r vnds  - -- f ADV,~ds + L c V n d s  - - f~ f df~ (6.118) 



Chapter 6 Applications 189 

(ii) The condition of tranquility of flow (fully developed laminar flow) may be 
imposed, provided that the cross-section B C  is placed sufficiently far from 
regions of intense variation in the velocity field. This condition is expressed 
mathematically as 

Ov,~ = 024, = 0 (6.1 19) 
On On 2 

The latter condition was not included in those of Chapter 3 and thus, it requires 
special treatment. 

If section B C  is placed away from regions of intense variation of the velocity, as 
for the laminar flow of case (ii), and its shape is such that the velocity is every- 
where normal to it (e.g. straight line), the tangential component of the velocity 
vanishes. Therefore, it is 

Vt - - - 0  
Os 

which implies 

r  (6.120) 

where C is an arbitrary constant. This condition permits the establishment of the 
velocity potential 0 to the approximation of an arbitrary constant. This, however, 
does not influence the velocity field, which is determined from Eqs. (6.1 13). 

Apart from the boundary condition (6.119), program LABECON can be utilized to 
solve fluid flow problems, if it is supplemented by a subroutine that evaluates the 
derivatives of the potential at internal points according to Eqs. (4.15) and (4.16). 
The modified LABECON is given the name FLUIDCON. The listing of the main 
program as well as the subroutines DERIV, which computes the derivatives at the 
internal points, and OUTPUT, which prints the results, are given below. 

C= =========== 
C 

PROGRAM FLUIDCON 
C 
C 
C This program solves the two dimensional Laplace equation 
C for two-dimensional irrotational inviscid flow of (FLUID) s 
C using the boundary.element method with (CON) stant 
C boundary elements 

IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER*I5 INPUTFILE,OUTPUTFILE 

Set the maximum dimensions 

PARAMETER (N=240) 
PARAMETER ( IN= 50) 
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C N= Number of boundary elements equal to number of boundary 
C nodes 
C IN= Number of internal points where the function u is calculated 
C 

DIMENSION INDEX (N) 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N), G (N, N), H (N, N) 
DIMENSION UB (N) , A (N, N) , UNB (N) , XIN (IN) , YIN ( IN), UIN (IN) 
DIMENSION UXIN ( IN), UYIN (IN) 

C 
C Read the names and open the input and output files 
C 

WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*0 ' (A) ' ) INPUTFILE 
WRITE (*, ' (A) ') ' Name of the OUTPUTFILE (max.15 characters) ' 
READ (*, ' (A) ') OUTPUTFILE 
OPEN (UNIT=l, FILE=INPUTFILE) 
OPEN (UNIT=2, FILE=OUTPUTFILE) 

C 
C Read date from INPUTFILE 
C 

CALL INPUT (XL,YL,XIN,YIN, INDEX,UB,N, IN) 
C 
C Compute the G matrix 
C 

CALL GMATR (XL,YL,XM,YM, G,N) 
C 
C Compute the H matrix 
C 

CALL HMATR (XL,YL,XM,YM, H,N) 
C 
C Form the system of equations AX=B 
C 

CALL ABMATR (G,H,A,UNB,UB, INDEX,N) 
C 
C Solve the system of equations 
C 

CALL SOLVEQ (A,UNB,N, LSING) 
C 
C Form the vectors U and UN of all the boundary values 
C 

CALL REORDER (UB,UNB, INDEX,N) 
C 
C Compute the values of U at the internal points 
C 

CALL UINTER (XL,YL,XIN, YIN,UB,UNB,UIN,N, IN) 
C 
C Compute the values of Ux and Uy at the internal points 
C 

CALL DERIV(XL,YL,XIN, YIN,UB,UNB,UXIN,UYIN, N, IN) 
C 
C Print the results in the OUTPUTFILE 
C 

CALL OUTPUT (XM, YM, UB,UNB,XIN,YIN,UIN,UXIN,UYIN,N, IN) 
C 
C Close input and output files 
C 

CLOSE ( 1 ) 
CLOSE ( 2 ) 
STOP 
END 

C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE DERIV (XL , YL , XIN, YIN, UB , UNB , UXIN, UYIN, N, IN) 

C 
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C 
C This subroutine computes the values of the derivatives 
C Ux and Uy at the internal points 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I) ,YL (N+I) ,UB (N) ,UNB (N) 
DIMENSION XIN ( IN), YIN ( IN), UXIN ( IN), UYIN (IN) 
DIMENSION XC (4), YC (4) ,XI (4) ,WG (4) 

C N =Number of boundary elements 
C XL,YL =Coordinates of the extreme points of the 
C boundary elements 
C XIN, YIN =Coordinates of the internal points 
C UB,UNB =Boundary values of U and Un 
C UXIN, UYIN=Derivatives Ux and Uy at the internal points 
C WG =Weights of the Gauss integration 
C XI =Coordinates of the Gauss integration points 
C in the interval [-i,I] 
C XC,YC =Global coordinates of the Gauss integration points 
C 

DATA XI/-0. 86113631, -0.33998104,0.33998104,0.86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
PI=ACOS (-i. ) 
XL (N+I) =XL (I) 
YL (N+I) =YL (i) 
PI=ACOS (-I.) 
DO 20 I=l, IN 
UXIN (I) =0. 
UYIN (I) =0. 
DO 10 J=I,N 
AX= (XL (J+l) -XL (J))/2. 
AY= (YL (J+l) -YL (J))/2. 
BX= (XL (J+l) +XL (J))/2. 
BY= (YL (J+l) +YL (J))/2. 
SL= SQRT (AX* * 2 +AY* * 2 ) 
ANGLEmATAN2 (AY, AX) -PI/2. 
ENXICOS (ANGLE) 
ENY=SIN (ANGLE) 
GXm0. 
GY=0. 
HX=0. 
HY-0. 

DO 40 K-I,4 
XC (K) =AX*XI (K) +BX 
YC (K) =AY*XI (K) +BY 
DX=XC (K) -XIN ( I ) 
DY=YC (K) -YIN (I) 
R=SQRT (DX* * 2 +DY* * 2 ) 
RX=-DX/R 
RY=-DY/R 
RN= - (RX*ENX+RY*ENY) 
RT=- (-RX*ENY+RY*ENX) 
UX=RX/(2. *PI*R) 
UY=RY/(2. *PI*R) 
UNX=- (RX*RN-RY*RT) / (2. *PI*R**2) 
UNY=- (RX*RT+RY*RN) / (2. *PI*R**2) 
GX=GX+UX*WG (K) *SL 
GY=GY+UY*WG (K) *SL 
HX=HX+UNX*WG (K) *SL 
HY=HY+UNY*WG (K) *SL 

40 CONTINUE 
UXIN (I) =UXIN (I) +HX*UB (J) -GX*UNB (J) 
UYIN (I) =UYIN (I) +HY*UB (J) -GY*UNB (J) 

I0 CONTINUE 
20 CONTINUE 

RETURN 



192 BOUNDARY ELEMENTS 

END 
C 

C 
SUBROUTINE OUTPUT (XM, YM, UB, UNB, XIN, YIN, UIN, UXIN, UYIN, N, IN) 

C 
C 
C This subroutine prints the results in the outputfile 

C 
IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XM (N), YM (N), UB (N), UNB (N) 
DIMENSION XIN ( IN), YIN ( IN), UIN ( IN), UXIN ( IN), UYIN (IN) 

WRITE (2,100) 
I00 FORMAT ( ' ', 79 ( ' * ' )//IX, ' RESULTS'//2X, ' BOUNDARY NODES'// 

1 1IX, 'X' ,15X, 'Y' ,15X, 'U' ,15X, 'Un'/) 

DO I0 I=I,N 
I0 WRITE(2,200) XM(I),YM(I),UB(I),UNB(I) 

200 FORMAT(4 (2X, EI4.5) ) 
C 

WRITE (2,300) 
300 FORMAT(//,2X,'INTERNAL POINTS'//10X, 'X',I5X, 'Y',I4X, 

1 'U' , 14X, 'UX' , 16X, 'UY'/) 
DO 20 K=I, IN 

C 
20 WRITE(2,400) XIN(K) ,YIN(K),UIN(K),UXIN(K),UYIN(K) 

400 FORMAT (5 (2X, El4.5) ) 
WRITE (2,500) 

500 FORMAT ( ' ', 79 ( ' * ' ) ) 
RETURN 
END 

C 
C[mllg ~1"l=lll----':ZIglmg::: ~ = [ = 1 : : 1 1 1 : I  Ill I ~I : : l : : = l  l = l l l = l l l = : = = l ~ m l l I z  

Example  6.5 

Consider the steady laminar flow of  an incompressible and nonviscous fluid 
through the tube of  Fig. 6.13. Determine the velocity potential and the velocity 
field in the tube. The shape of the curvilinear segments are determined by the 
equations: 

Segment BC : y = 2x :~ - 3x 2 - 1 

Segment B ~C ~" y = - 2 x 3 + 3 x  2 + 1  

The assumed boiJndary conditions are" 

at the inlet cross-section AA ~' 0__~ = vn - - 1  
On 

at the outlet cross-section DD" q~-0 

at the rigid walls A B C D  and A'B 'C 'D t" o~ 
On 

- =  V n  - -  0 
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Figure 6.13 The tube segment of Example 6.5. 

The problem is solved using the program FLUIDCON. The boundary is divided 
into constant boundary elements in the following way: N I elements on each of the 
segments O A  and A B ;  2 ,  N I elements on each of the segments B C ,  C D  and 
D O  ~ . The same discretization is employed for the corresponding symmetric seg- 
ments above the :r-axis. Thus, the total number of elements is N = 16, N1. 

Figure 6.14 depicts the distribution of the normal velocity component v,, at the 
outlet cross-section D D  ~ for various values of N .  We notice that the flow be- 
comes sufficiently smooth at this cross-section, since it reaches the anticipated 
mean value v,~ - 0.5, which is half of the velocity at the inlet cross-section A A  t . 

Moreover, the distributions of the velocity components vx and vu at characteristic 
cross-sections of the tube are shown in Figs. 6'.15 and 6.16, while the contour plots 
of the potential are shown in Fig. 6.17 

6.7 Conclusions 

In this chapter, we studied a variety of important engineering problems, which are 
formulated as boundary value problems for the Laplace or Poisson equation. Other 
problems described by these equations are, for example, the fluid flow through po- 
rous media (Darcy's law), diffusion of ions (Fick's law), electric potential in a 
body (Ohm's law), etc. For all these problems, the flux q is expressed by a law 
quite analogous to that of Fourier (see Section 6.5). Of course, the field function u 
and the constitutive matrix D have a different physical meaning in each problem. 
Table 6.5 presents some of the problems mentioned above by giving the physical 
meaning of the involved quantities. 
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A general conclusion that can be drawn from the numerical examples presented in 
this chapter, is that the BEM with constant elements provides a very good numeri- 
cal solution for problems described by the Laplace or the Poisson equation. The 
obtained accuracy is very good. (see Examples 6.1, 6.2, 6.3). Moreover, the prepa- 
ration of the data is very simple, since the discretization is limited only to the 
boundary. 

Table 6.5 Examples of physical problems described by the Laplace or 
Poisson equation. 

Differential 
equation 

v . (vr  0 

V . ( S V u ) + f = O  

V .  (D.  VT ' )  + f - - ()  

V . ( V 0 ) + f  = ( )  

V .  (D .  270) + f = () 

V . ( D . V V ) + f = O  

Physical 
problem 

Saint-Venant 
torsion of  
elastic bars 

Small 
deflections of  
membranes 

1 teat flow 

Irrotational, 
incompressible 
and inviscid 
fluid flow 

Fluid flow 
through porous 
media 

Electric 
potential in 
bodies 

Physical quantities 

r = r  y) = warping function 

u - u(x, y) -- deflection surface 

f = f(:r, y) = transverse load 

S = constant tension force per 
unit length 

T = T(:r, y) = temperature 

D = constitutive matrix for 

thermal conductivity 

f = f (x ,  y) - internal heat 
source density 

r = 4~(:z:, y) = potential function 
of  the velocity 

field 

f = internal heat source density 

f -- internal heat source density 

r -- piezometric head 

D = constitutive matrix for 

permeabili ty coefficients 

V --- potential 

D = constitutive matrix for 

electric conductivity 

f -- internal source density of  
electric charge 

Constitutive 
relations 

Hooke 

r , j , :  = [ D] 3',,- 

D = a  -1 

D = S I  
I = unit matrix 

Fourier 

q = - D . V T  

q = heat flux 

vector 

v=Vr 
v - velocity 

There is no 

constitutive law 

Darcy 

q = - D . V r  

q = volume flux 

vector 

Ohm 

q = - D . V V  

q = electric charge 

flux vector 
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6.8 References 

There is a voluminous literature on the topics of this chapter. Therefore, we can 
only make reference to some well-known and commonly used books. The Saint- 
Venant torsion problem of non-circular prismatic bars is clearly treated in the 
books of Yimoshenko and Goodier [1] and Muskhelishvili [2]. The reader, how- 
ever, may supplement his knowledge on this subject by studying the books of 
Kollbrunner and Basler [3], Friemann [4] and Novozhilov [7]. For heat flow prob- 
lems the interested reader is referred to the books of Carslaw and Jaeger [16] and 
Uzisik [17]. Finally, we mention the book of Hirsch for fluid flow problems [18]. 
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Problems 

6.1. Compute the non-dimensioanalized torsional constant I t /h  ~ and distribution 
of stress "rt~./GOh on the boundary of a bar having the cross-sections shown 
below (p - hi4 ). Also, compare the obtained results to those of analytical or 
approximate solutions [19]. 

Figure P6.1 

6.2. Determine the deflection surface of a rectangular membrane (0 _< x _< a, 
0 _< y < b ), which is subjected to hydrostatic pressure f - qox/a. It is given 
a - 3 . 0 0 m ,  b - 2 . 0 0 m ,  q o - l k N / m  2 S - 1 0 k N / m  

6.3. Solve the problem of Example 6.4 using the whole domain of Fig. 6.9 (two 
boundaries) instead of using just the upper-right quadrant of Fig. 6.10 (one 
boundary). 
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6.4. Determine the temperature distribution in the cross-section of the T-beam in- 
sulated as shown in Fig. P6.4. 

Figure P6.4 

6.5. Solve the torsion problem for the composite bar of Fig. P6.5, if G2 : 2G1, 
where GI and G2 are the shear moduli in the subregions f~l and f~2, respec- 
tively. Compare the results with those of a homogeneous bar having the same 
dimensions and G = 1.5G~. 

Figure P6.5 

6.6. Solve the torsion problem for a bar consisting of an orthotropic material with 
Guz -- 2Gxz and having square cross-section of side a = 0.20. 

6.7. Determine the velocity distribution at the outlet cross-section of the tube in 
Fig. P6.7, if the constant velocity at the inlet cross-section is v, = - 1 .  
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Figure P6.7 



Chapter 7 
The BEM for Two-Dimensional 

Elastostatic Problems 

7.1 Introduction 
This chapter presents the BEM for the solution of linear elastostatic problems in 
two dimensions. The development of the BEM for the plane elastostatic problems 
is analogous to that for the plane potential problems discussed in previous chapters. 
There is, however, an essential difference. Here the problem is formulated in terms 
of two basic unknowns which are the two displacement components. Therefore, the 
resulting boundary integral equations are two and coupled, in contrast to the 
potential problems for which only one integral equation has to be solved. The 
consequence of this is that the establishment of the fundamental solution as well as 
its form is much more complicated. Both problems of plane elasticity, namely the 
plane strain and the plane stress, will be studied in this chapter. Applications will 
be presented to demonstrate the efficiency and the usefulness of the BEM for 
solving engineering problems. 

7.2 Equations of plane elasticity 

7.2.1 Plane strain 

Plane strain in linear elasticity is considered the case for which: 

(a) One of the three displacement components, say w along the z-axis,  is con- 
stant. 

(b) The other two displacements, u and v along the x -  and y-axes,  respec- 
tively, are functions only of the two variables, .~; and y. 

This state of deformation appears in infinitely long (practically very long) pris- 
matic or cylindrical bodies, whose axis coincides with the z-axis ,  and the loading 
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is normal to this axis and independent of the z variable (Fig. 7.1). Another 
example of plane strain is the deformation that occurs in a plane through the axis of 
a circular cylinder (diametric plane) when the loading is axisymmetric and does not 
vary in the axial direction. 

Figure 7.1 Cross-section of a long dam under plane strain. 

7.2.1.1 K i n e m a t i c  r e la t ions  

The previously mentioned conditions are stated mathematically as 

w - C ,  u - u ( x ,  y )  , 'v - v ( x ,  y )  (7.1) 

where C is an arbitrary constant. 

Thus, the components of the strain tensor are [1, 2] 

On 
Gx 

Ox 

OV 
cy : Oy 

OU 
")'~Y - Oy 

Cz - O, 

Ov 
O z  

")/yz - -  0 

(7.2) 
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7 . 2 . 1 . 2  C o n s t i t u t i v e  r e l a t i o n s  

Assuming linearly elastic and isotropic material, the constitutive relations for plane 
strain are 

Cry -- A(Cz + Cy)+ 2~Cy 

"r'.y --  tt '7.y 

(7.3) 

T x z  ~ 0 

"]'yz ~ 0 

where ,X and # are the Lam6 constants, which are related to the elastic constants 
E ,  G and !,, through the following expressions 

E' liE' 
iz -- G - , A - (7.4) 

2(1 + ,,) (1 + u ) ( 1 -  2u) 

We readily conclude by combining Eqs. (7.2) and (7.3) that the non-vanishing 
components of  the stress tensor are functions only of  the variables x and y.  

Equations (7.3) can be solved for the strain components, yielding 

1 [c~. ,,(a:j + C~z)] 
E 

(7.5a) 

1 
(7.5b) 

a ~  - . ( c * *  + c~,,) - 0 (7.5c) 

1 
7*y - -7 7-,y (7.5d) 

G 

"7= - 0 (7.5e) 

7yz - 0  (7.50 

Equation (7.5c) gives 
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Subst i tu t ing this express ion  for O-z into Eqs. (7.5a) and (7.5b),  we  obta in  the 

fo l lowing  two equat ions  for the normal  strains 

g'z - -  
1 __ / ,12  

E 
O'x - -  ~ O'y 

1 - u  

Cy = O'y - -  ~ O ' x  

E 1 -1 , ,  

Set t ing 

1., - E 
/7 - and E - (7.6) 

1 - u 1 - u  2 

we find that 

_ I 

E E FE 
I 

p -- G = 2(1 + r,) 2(1 + F) and A 1 - u  -2  (7.7) 

and the strain c o m p o n e n t s  may  then be writ ten as 

1 
c:~ - - -  (o:r - jTo,j) (7.8a) 

E 

1 
<v - ~ (cT,j - iTcr~ ) (7.8b) 

t1,' 

2(1 + F) (7.8c) 
")'~y - -  _ T,r.q 

E 

The elastic constants  E and /7 are referred to as effective elastic constants. As we 
will see later, the effect ive elastic constants  al low to use equa t ions  o f  the same 
form for both plane strain and plane stress problems.  

Equat ions  (7.8) are combined  in a matr ix equat ion  as 

{E} - IS] {or} (7.9) 

where  {c} and {or} are referred to as the strain and stress vectors ,  respect ive ly ,  

and are def ined  as 

{ e }  - 

C ~  

s  (7.10) 

and 
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O ' x  

T x y  

(7.11) 

The matrix [S] is known as the compliance or flexibility matrix and has the form 

1 
I S ] - T  

1 - j 7  0 

-~- 1 0 

0 0 2(1 + F) 

(7.12) 

Solving Eq. (7.9) for the stress vector {or}, we obtain 

{~,} = [ c ] {~}  (7.13) 

where 

[ c ] -  IS] -1 - 
u 

E 
1 - / 7  2 

1 7) 0 

P- 1 0 

0 0 ! ( 1 - / 7 )  
2 

(7.14) 

The matrix [C] is known as the stij]hess matrix. 

The component form of Eq. (7.13) is 

O ' x  m 

O ' y  - - -  

m 

E (~ + r ~  ) 
1 - l "72 

E 
1 - i f  2 

m 

E 
T x y  -- -  ~ ")/x g 

2(1 + iT) 

(7.15) 

7.2.1.3 Equilibrium equations 

The equilibrium equations for a three-dimensional body are [2] 

OG. OTzu  OTzz + + 
Ox Oy Oz 

+b~ - 0  

Or,y F Ocry + 07yz 
Ox Oy Oz 

+b,~ - 0  

(7.16a) 

(7.16b) 
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O r - F  Oryz + Ocrz + bz - 0 (7.16c) 
Ox Oy Oz 

where bx, by and bz are the components of the body force per unit volume. For the 
plane problem, it is 

bx = b~(x, y) , by = by(x, y) , bz = 0  (7.17) 

Taking into account that the stress components are independent of z and using 
Eqs. (7.3), we readily conclude that the third of Eqs. (7.16) is identically satisfied, 
while the first two become 

O0"x OTxy - - - ~ -  
Ox Oy 

O'r~y F Ocry 
Ox Oy 

+b~ - 0  

+bu - 0  

(7.18) 

Substituting Eqs. (7.15) into Eqs. (7.18) and using Eqs. (7.2), we derive the equilib- 
rium equations in terms of the displacement components as 

V2u + l + V(__O2u + 02v 
1 - F [ Ox 2 OxOy 

1 +--b~ - 0 
G 

~7.2v-+- 1 + i7[ 02u 
1 -  F OxOy 

+--02v +--1 b,j - O 
i.)y 2 G ' 

in ~2 (7.19) 

or substituting i7 from Eq. (7.6), we obtain the governing equations for the plane 
strain problem in the form 

~2u + ~  
1 -- 21/ 

O'2v ] 1 --02u + + - -  b~ - O 
Ox 2 OxOy J G 

V2v+ 1 [ 02u + 0 2 v l +  1 
1 - 2,---Z, OzOy Oy ~ -~b. 0 

in 12 (7.20) 

Equations (7.20) are known as the Navier equations of  equilibrium for the plane 
elastostatic problem of a body occupying the two-dimensional domain f~. 

7.2.1.4 Boundary conditions 

The solution of Eqs. (7.19) must satisfy prescribed boundary conditions on the 
boundary F of the body, which are based either on the displacements u and v, or 
on the boundary tractions tx and ty. The boundary conditions can be classified 
into the following four types: 



Chapter 7 The BEM for Two-Dimensional Elastostatic Problems 207 

( i )  u - ~-, v - ~ o n  F1 

( i i )  u - ~ ,  ty - tv on F2 

( i i i )  t ~ - -  t~ ,  v - - v  on F3 

(iv) t~ - tx, tu - t~ on 1-'4 

(7.21) 

where F -  F1 t2 1-'2 U F3 t._J 1-' 4 . The prescribed quantities are designated by an 
over-bar. Of course, any of the boundary parts F1, F2, F3, F4 may be identical to 
the whole boundary F ,  that is the boundary conditions may be only of one type. 
The boundary conditions are mixed, if different boundary conditions are prescribed 
over two or more parts of the boundary. Attention should be paid when F4 - F.  In 

m 

this case, the boundary tractions t~ and tu can not be prescribed arbitrarily, but 
they must ensure the overall equilibrium of the body, namely 

f ~ bx dr2 + f r t~ ds - 0 

f ~  by dr2 + f r  t. ds - 0 

For this type of boundary conditions, the solution of the Navier equations is not 
uniquely determined as it contains an arbitrary rigid body motion. An example of 
boundary conditions for an infinitely long body of rectangular cross-section is 
shown in Fig. 7.2. 

Figure 7.2 Support and loading conditions on the boundary 
of a rectangular domain. 
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The relations between the boundary tractions t~, ty and the stress components ax, 
ay and ~-~y may be derived from the equilibrium of an infinitesimal body element 
on the boundary (Cauchy tetrahedron [2]). In two dimensions these relations are 

" x  
tx  - -  O'x TI, x ~ Txy  TI, y [ 

ty - -  Txy 7~x -~- (Ty Tby 
(7.22) 

where nx and ny are the direction cosines of the unit vector normal to the bound- 
ary. If the stress components in Eqs. (7.22) are replaced by the expressions of 
Eqs. (7.3) and then the kinematic relations (7.2) are employed, we arrive at the 
following displacement-based expressions for the boundary tractions 

t z  - - / ~  
Ou + O__s 
Ox Oy 

Ou Ov 
L . n x  - 1 1 - -  7~y n~ + # Ox Ox 

I - -  - -  - -  n y + #  - - n x + ~ n y  

Oz Oy Oy Oy 

O u  

+ ~ o--g 

+ IL O---v-v 
On 

(7.23) 

7.2.1.5 Initial stresses and strains 

In many problems initial state of stress or strain may be present, which are due to 
temperature variations or other causes. For instance, we consider an initial state of 
strain, whose components are denoted by 

G0 } 

(} 

() 
g'y 

0 

(7.24) 

Denoting by {et } the total strain, the elastic strain {ec} is obtained by subtracting 
the initial strain from the total one, i.e. 

{e,. } = {e, } - {c,, } (7.25) 

By means of Eq. (7.13), we obtain 

{ ~ }  = [c]  {~c} = [ c ] ( { ~ ,  } - {~o} )  

or 

{~,; } = [c]  {~, } - [c]  {~o} = {~ ,  } - {~ , , }  (7.26) 

where the stresses {a0 } = [C]{r } are the initial stresses. 

When the initial strain is due to a temperature variation, it is 
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{Co} - c~AT 

1 

1 

0 

(7.27) 

where a is the coefficient of thermal dilatation and A T the temperature change. 
The resulting initial stresses are 

{o-o } - [ c ]  - 
E c l A T  

1 - F  

1 

1 

0 

(7.28) 

7.2.2 Plane stress 

The theory of plane elasticity is applied to another problem of great practical sig- 
nificance, to that of the analysis of thin plates subjected to in-plane loading. Such a 
state of stress occurs in shear walls. We consider a thin elastic body, whose thick- 
ness h is very small compared to the other two dimensions (Fig. 7.3). 

Figure 7.3 Thin elastic body. 

The loading is due to the body forces b~, by and the boundary tractions t~, ty. The 
tractions are usually assumed to be symmetrically distributed with respect to the 
mid-plane of the body, although more often the variation along the thickness h is 
considered to be constant. In this case the resulting state of stress is not independ- 
ent of z ,  but, if the thickness h is very small, it is quite accurate to assume [2] that 
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along the thickness h ,  whereas the remaining stress components do not depend on 
the variable z,  i.e. 

Thus, the constitutive equations become 

1 
E 

1 ey - --:(ay - ua~) 
kg' 

2(1 + u) 

E 

and the equilibrium equations are reduced to two as in the case of plane strain, 

O 0"x O T 'Jn.I 

Oz Oy 

Oz Oy 

+b~ - 0  

+ b~ - 0 

(7.29) 

(7.30) 

We notice that Eqs. (7.29) and (7.30) are identical in form to Eqs. (7.8) and (7.18). 
Therefore, all equations for plane stress can be obtained by the respective equations 

u 

of plane strain, if the effective elastic constants i7 and E are replaced by the actual 
ones i,, and E .  Thus, we have: 

Elastic constants 

E /t - G = (7.31 a) 
2(1 + .)  

,~, = ~,,E (7.31 b) 
1 - 1] 2 

where )~* plays the role of the Lam6 constant. 

Constitutive equations 

{e} -[S]{cr} (7.32) 

{a} - [ C ] { e }  (7.33) 
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1 IS]-~ - - / J  

[C] = E 
1 ~ / / 2  

- u  0 

1 0 

0 2(1+ u) 

1 u 0 

u 1 0 

o o 1(I-.1 
2 

(7.34) 

(7.35) 

Navier's equations of  equilibrium 

V2u + l + v' 1_02u + 02v 
1 - u [ Ox 2 OxOy 

+lb~ - o  
G 

V2v + l + u I 02u 
1 - v ,  [ OxOy 

+ 02___._~v]+ 1 
OY 2 ~bu -- 0 

Boundary tractions 

tx A* Ou + Ov ] 
- ~ ~ n ~  + t L 

Ox Oy ) 
Ou Ov ~ Ou u,~ + ~ nu ) + I t 
Ox Ox :~n 

ty  --- /~* 
Ou + 0~_! 
O T Oy 

+/ t  [ Ou Ov 7Ly 
Oy Oy 

O V  + ~-~ 

Initial stresses due to temperature variation 

(Y0} -- 
EaAT 

1 - -  l] 

(7.36) 

(7.37) 

(7.38) 

7.3 Betti's reciprocal identity 
The derivation of the integral representation of the solution for two-dimensional 
elasticity problems requires the establishment of a reciprocal identity for Navier's 
operator, Eq. (7.19), similar to that of Green's for the Laplace operator, Eq. (2.16). 
Betti's reciprocal identity plays this role. It can be readily derived from the known 
Betti's theorem for the reciprocity of works, which is valid for the linear theory of 
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elasticity. For this purpose, we consider an elastic body occupying the volume V 
of the three-dimensional space and bounded by the surface 5'. Moreover, we con- 
sider two states of stress due to two different distributions of body forces and 
boundary quantities (displacements and tractions). We designate the displacements, 
body forces and tractions for the two states of stress as follows: 

State I: 

U - -  

U 

V 

W 

b x  

b -  by 
bz 

t x  

t - -  t~ 

tz 
(7.39) 

State H: 

U *  --" 

~//, * 

V* 

W * 

b * --- 

b; 

b; 

b; 

t 
* 

(7.40) 

According to Betti's theorem, the work produced by the displacements of state (I) 
and the forces of state (II) is equal to the work produced by the displacements of 
state (II) and the forces of state (I). This may be expressed as 

f u. + �9 - u. + L u .  (7.41) 

or using Eqs. (7.39) and (7.40) 

-- fv(U*b~:+v*b~j +w*b~)dV+ f s ( u * t x + v * t ~ + w * t ~ ) d S  (7.42) 

For the plane problem we distinguish the following two cases: 

(a) Plain strain. We consider the part of the cylindrical body cut by the two 
planes z and z + 1, that is a slice of unit thickness. In this case, it is bz = 0,  
b ; -  0 inside the body, t~.-  0, t ; -  0 on the cylindrical surface and by 
virtue of Eqs.(7.22) or (7.23) it is t ~ : - t y - 0 ,  t ~ - t y - 0  on the plane 
sections. Moreover, taking into account that w = c, w * =  c* on the plane 
sections and, thus, the works produced on them are of equal magnitude but 
opposite sign, Eq. (7.42) becomes 
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L + + + 

= f~(u*bx +v*by)d~ + f r ( u *  tx +v* tu)ds (7.43) 

(b) Plane stress. We consider a thin plate of constant thickness h .  In this case, it 
is bz - 0 ,  b~ - 0  inside the body and tz - 0 ,  t~ - 0  on the whole surface 
S and by virtue of Eqs.(7.37) it is t x - t y - 0 ,  t ~ - t y - 0  on the plane 
sections. Hence, also Eq. (7.42) takes the form of Eq. (7.43) when applied to 
this body. 

Furthermore, if the body forces in Eq. (7.43) are replaced by their expressions from 
Eqs. (7.19), we obtain the reciprocal identity for the Navier operator 

(7.44) 

where the operators N~(.,.) and Ny(.,.) are defined on the basis of Eqs. (7.19) as: 

l + K  
V2u + 

1 - K  
N~(u,v) = - G  

l + H  
Ny(u,v) = - G  V2v + 

1 - P  

02~___5 + 02v 
Ox 2 OzOy 

02u + 02__Y_ v ] 

OxOy Oy 2 ) 

(7.45) 

Equations (7.45) are valid for plane strain. We recall that for plane stress j7 should 
be replaced by v,. 

7.4 Fundamental  solution 

In order to derive the boundary integral equations pertaining to the plane elas- 
tostatic problem, it is necessary to establish first the fundamental solution of the 
Navier Eqs. (7.19). From the physical point of view, the fundamental solution ex- 
presses the displacements produced in an infinite plane body by a concentrated unit 
body force. This solution is attributed to Kelvin and this is why it is known in the 
literature as Kelvin's solution. It can be established using the procedure described 
below. 

Consider the concentrated force F ( F ~ , ~ ) ,  IFI = 1, applied at point Q((,71) of the 
plane (see Fig. 7.4). It is apparent that the components F~ and F,7 of the force F 
are the direction cosines of the unit vector representing this force. The density of 
the body forces produced by the force F at a point P(x,y) can be represented 
using the delta function. Thus, we have: 
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\ \  

I 
I 
I O ( ~' ~? ) F~ I 

v I 
1 

! 
! 

P(x,y) / /  
/ 

/ \ / 
\ 0 "-x i ~ 

0 ~-~ - -  CX) / 1 1  

/ 
/ 

/ 
/ 

/ 
/ 

Figure 7.4 Concentrated unit force F(F~, F,~) applied at 
point Q(~, 71) of the plane. 

b -  ~5(P-Q) F (7.46) 

o r  

~ - ~ ( P  - Q )  y,, 
(7.47) 

In this case, Eqs. (7.19) are written as 

1+i7 
~72u + 

1 - ~  
o~,~ + O~v } 1 ~( p _ Q ) i ~  - o 

o VY 
I + F  V2v+ 
l - j 7  

02U 

OxOy 
02v I 1 + - -  + 5 ( P  - Q) F,, - 0 Oy 2 

(7.48) 

The fundamental solution for the Navier operator is a singular solution of 
Eqs. (7.48), which can be established by expressing the displacement components 
in terms of the Galerkin functions. Thus, we set 

2 0 2Gu - V2r - 
1 + ~  

2 0 2Gv - ~2~, 
1 + ~  - ~ y  

or + oe} 
Ox Oy .  

ar + or 
Ox Oy 

(7.49) 
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where r - r y) and g, - r y) are the Galerkin functions. They represent the 
components of a vector, the so-called Galerkin vector [3]. 

Introducing Eqs. (7.49) into the equilibrium equations (7.48), we arrive at 

V 4 r  - -  -(1 + i7)(5(P- Q) Fr "[ 

(7.50) 
V4r - -(1 + iY)6 (P-  Q) F,, 

where 

V,4 _ ~72 V 2 = 0 4 0 2 0 2 0 4 
- - - F  2 t Ox 4 Ox 2 0 y  2 Oy 4 

is the biharmonic operator. 

Hence, Eqs. (7.49) are a solution to Eqs. (7.48), if the functions r and g, represent 
singular particular solutions of Eqs. (7.50). These solutions can be established by 
working as follows: 

The first of Eqs. (7.50) is written as 

v ,I, - -(1 + Q) & (7.51) 

where it was set 

V2r - cP (7.52) 

Equation (7.51) has the form of Eq. (3.8), Thus, a singular particular solution of 
this equation is 

(I) - - (1  +/7) (gnr+ B) F e 
2rr 

where 7 ' - ] P -  Q[ and /3 is an arbitrary constant. Consequently, Eq. (7.52) be- 
comes 

(1 + i7) 2 7 2 r  - ( g n r ' +  B) F~ (7.53) 
2:r 

Since the solution is independent of the polar angle at the source point Q, one can 
write for r ~: 0 

1 d ( r  de 
r dr ~ 

= _,lg +/7) (gnr + B) Fe 
2rr 

Two consecutive integrations result in 
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r  , 1 (  + V )  F~ 
2rr 

r 2 1 
- - g n r  + - ( B -  1)r 2 + C gnr  + D 
4 4 

(7.54) 

where C and D are arbitrary constants. Since we are interested for a particular 
solution, we can set B - 1 and C = D - 0 so that the solution has the simplest 
form. Thus, we have 

q5 -- - ( 1  + P) F~ r 2 gnr  (7.55) 
8rr 

Similarly, we obtain 

g, _ _ (1 + K) F, r 2 gnr  (7.56) 
8~ 

Substitution of Eqs. (7.55) and (7.56) into expressions (7.49) yields the fundamen- 
tal solution for the Navier equations. As we will see in the next section, the funda- 
mental solution for (i) F~ = 1, F,~ = 0 and (ii) F~ = 0,  FT~ = 1 are required for 
deriving the boundary integral equations. Therefore, the derivation of the expres- 
sions for the fundamental solution is limited to these two cases. 

(i) F ~ - I ,  ~ , - o  

We readily have 

r _ 1 + ~ r 2 gnr  
87r 

g, - O 

1 + i7 
V 2 r  (gnr  + 1) 

2rr 

02r 
Ox 2 

I + K  ( 2 g n r + 2 r  2, .+1) 
87r 

0 2 r  _-- 1 + i7 2 r,. z:u 

OxOy 8rr 

(7.57) 

In the previous expressions and in what it follows r,, and r.y express the deriva- 
tives of the distance 7- with respect to x and y ,  respectively, and are given as (see 
Appendix A) 

~ - x  r / - y  
v,z - - - - ~ ,  V,y = 

7" r 
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which obviously satisfy the relation r,~ + r,~ - 1. 

Equations (7.57) are substituted into expressions (7.49) to yield 

Ux~  ~- 
87rG 

(3 - P) g n r  - (1 +/7)  r2x + 

Uy~ = 1 ( l + / 7 )  7:xr, y 
87rG 

7 - ~  

2 
(7.58) 

where Ux~ and Uy~ represent the displacements u and v,  respectively. The first 
subscript denotes the direction of the displacement, whereas the second one the di- 
rection of  the unit force (see Fig. 7.5). 

(ii) F~-O,  F , , - I  

Following the same procedure as in case (i), we obtain 

r - 0 

th 1 + / 7  2 1 _ _  7 "  ~ / t T '  

871- 

27214 , _ 1 + /7  ((,n,r + 1) (7.59) 
27r 

02'(J = 1 + i7 2 7:~7:u 
OxOy  87r 

0 2 ~ =  l + F ( 2 g n r _ + _ 2 , ; ~ + l )  
Oy 2 87r i 

and substituting Eqs. (7.59) into the Eqs. (7.49), we find 

1 
U~,,~ = ~ (1 +/7)  7::,. 7:y 

87rG 

UyT1 - -  
87rG 

(3 - F ) g n r  - (1 + Yz)7:~ + 
7 - f i  

2 

(7.60) 

Employing indicial notation for the coordinates of points P and Q,  i.e. x~, x2 and 
~l, ~2, respectively, Eqs. (7.58) and (7.60) may be written as 

U,j = 1 [C1 6ij g n r -  C2 r, ~;j + 6ij C.~ ] (7.61) 
87rG ' ' 

where 
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Direction of the unit force /of 
) 

Direction of the displacement 

Point of application 
the unit force 

Point where the displacement 
is considered 

Figure 7.5 Component of the two-dimensional elasticity 
fundamental solution. 

7 - Y  
C1 - 3 -  i7, C2 - 1 + ~7, C:~ = (7.62) 

2 

The constant C:~ can be omitted, because, as it will be shown in Section 7.12, it 
produces only rigid body displacements, which do not influence the stresses and 
the strains. 

Equation (7.61) may also be written in matrix form as 

u (1 , ,  Q) - 
U:/,~ U.,l 

r l l 

U21 

UI 2 
(7.63) 

The components of the fundamental solution represent the components of a two- 
po in t  second order tensor [3, 4] known as G r e e n ' s  tensor  [5]. 

Since it is (see Appendix A) 

- ~ / ( : ~ . -  ~)~ + ( .~J -  ~ / ) " ,  ,:.,: - - , : ~ ,  ~:, - -~: , ,  

one can easily find out that the tensor defined above is symmetric with respect to 
points P and Q. This means that its components do not change, if the role of the 
two points is interchanged. Namely, P becomes the point where the force is ap- 
plied (source point) and Q the point where the displacement is evaluated (field 
point). Thus, it is 

u(P, Q) - u(Q, P) 

or 

Uy~ Uy,l 

U ~:r 

U q,r 

U~y 
gqy 

(7.64) 
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This symmetry expresses the Betti-Maxwell law for the reciprocity of the displace- 
ments. 

7.5 Stresses due to a unit concentrated force 

The expressions for the stress components due to the unit force can be evaluated 
using Eqs. (7.3). We distinguish again two cases: 

(i) F ( - 1 ,  F,~-O 

,7~ - ,x (uxr + u~r ) + 2~ u~,~ 

(7.65) 

Substituting Eqs. (7.58) into the above equations, yields 

- < ,  + 2 , : : )  
1" 

AI 2 
o-y~ - ~ ( - A 2 ' r : r - t - 2 7 : ~ ? : y )  

7" 

T~y~= A~ (A~ t:y + 2 ~:.~ r:y) 
7" 

where 

(7.66) 

A 1 = 
l + p  1 - i T  

- ~ ,  A2 = (7.67) 
4:r 1 + / 7  

(ii) F ~ - O ,  F,,-1 

cry,i - A (U~,/.~ + U~,/,~) + 2# U~,~,~ 

r ~ , , -  IL (Ux,,,~ + U~,,,~) 

Substituting Eqs. (7.60) into the above equations, results in 

(7.68) 
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o.xr/ --- A_~ ( - A  ~,~ + 2 r,~ r,~) 
7" 

o.yr/ - -  
7" 

Txy,~ = A~ (A2 r,~ + 2 r,~ r,~) 
r 

}. (7.69) 

If indicial notation is employed for the coordinates, i.e. x l ,  x2, then Eqs. (7.66) 
and (7.69) are reduced to [6] 

A1 o.Ok - -  - -  [ A2 ( ~ik r, J nt- (~Jk l] i ~ ~ij r, k ) qt- 2 r, i r, J r, k ] (i, j, k - 1, 2) (7.70) 

The subscript k - 1, 2 pertains to the directions ( and r/ o f  the unit force, respec- 
tively. It should be noted that o.~ - o.~, o22 -- o.y, o.~2 - Txy. 

7.6 B o u n d a r y  t r a c t i o n s  due  to a uni t  c o n c e n t r a t e d  force  

Expressions for the tractions on the boundary due to the concentrated force can be 
derived using Eq. (7.22). We distinguish two cases: 

(i) F~ -- 1, E,, --(} 

Tx( - o.:r( 7t; ~ T~.~j( 1l 9 

T y (  - -  Tx;j(  ~t~: + o.u(  nsj 

or using Eqs. (7.66) 

7" 

T ~ -  A--~ (2~:~ 7::, 7:,, + AT:,) 
F 

(7.71) 

(ii) Y~ - - 0 ,  F , ; - 1  

YxT I ~ o.xTi ll~x ~ Txy17 Try 

TyTi - -  7"Ty~l llx ~ o.yTi rl, y 

or using Eqs. (7.69) 
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T~,  - A 1  ( 2 r ,  x T,,y '~,n --  A2 rt ) 
7.. 

Ty, - A--L (A2 + 2r,2) r,,~ 
7" 

(7.72) 

where r,,~ = r, x nx + r, y ny expresses the derivative of r in the direction of the 
outward normal to the curve (boundary) passing through the point (x,y) and 
71t = -7:xny + r, un~ the derivative along the tangent to this curve. The vectors n 
and t define a right handed system of axes. 

Using indicial notation Eqs. (7.71) and (7.72) are reduced to [6] 

T,k - A--~-~ [ ( A2 6~k + 2r, rk)r,n + A2 ( r, nk - rku~)] 
7. 

(7.73) 

(~.k = 1.2) 

7.7 Integral representation of the solution 

The integral representation of the solution for the two-dimensional elastostatic 
problem is derived from the reciprocal identity (7.43) by considering as state (If) 
the state of stress produced by a unit body force at point Q. The unit force is 
applied first in the ( -direct ion and then in the 'J/-direction. 

(i) F~-I ,  / . , - 0  

For this case, the state (II) inside the domain ~ is defined as 

b : - a ( P - Q ) ,  6 : , - 0  

"." = U.~( P. q )  . v" =U~(P,Q)  

while on the boundary F it is 

t; = T..~(p. # ) .  t:; = T~(P, Q) 

where P c ~2 and p c F .  

Introducing the above expressions into Eq. (7.43) and taking into account that 

f ..,b.; dl~ - f u(t: ' )5(P - Q)d~p - u(Q) 

we obtain the integral representation of the solution for the displacement in the x - 
direction at points Q inside the domain f~ in the following form 
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u(Q) - f ~ [ U x ~ ( P , Q ) b x ( P )  + U~,~(P,Q)bu(P)]dl2p 

(7.74) 

(ii) F~=O, F , = I  

For this case, inside the domain ~ it is 

b,~ - O, b,~ - (5( P - Q) 

u* - U., ,(P, Q) , v* - Uy,,(P, Q) 

and on the boundary F 

t ;  = Q )  , t; - Ty,,(p, O) 

Introducing the above expressions into Eq. (7.43) and taking into account that 

we find 

(7.75) 

Equations (7.74) and (7.75) represent the integral representation of the solution to 
plane elasticity Navier's equations. We notice that the role of points P ( x , y )  and 
Q(,~,7/) in these equations has been interchanged due to reciprocity. Thus, point 
Q(~,7/) is now the field point and P ( x , y )  the source point. The vector n in the 
expressions (7.71) and (7.72) of Tx~, Ty~, T~,~ and T~,~ is normal to the boundary 
at the point p C 1-' where the load is applied. For reasons of consistency, the initial 
notation is restored. Hence, P E Q or p E F will designate field points, while 
Q c Ct or q (E F will designate source points, i.e. points where unit forces are 
applied. Thus, Eqs. (7.74) and (7.75) may be rewritten under this notation and at 
the same time may be combined in a single matrix equation as 
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' u ( P )  U~(Q, P) U,~(Q, P) 
U~y(Q, P) U,y(Q, P) b,~(Q) d~Q 

U~.(q,P) U,~(q,P) 
U@(q, P) U,~y(q, P) 

te(q) 
t,(q) dsq 

Te.(q, P) T,l~(q, P) 
T@(q, P) T,,u(q, P) 

u(q)  
v( q ) } dsq (7.76) 

This change in notation necessitates the replacement of  derivatives r,, and r,u in 
Eqs. (7.58), (7.60), (7.71) and (7.72) with r e and r,,1, respectively, without how- 
ever changing their sign. Thus, we have 

U e  x z 87rG 
7 - P  

(3 - iT) enr - (1 + iT)r~ + 
2 

U, / .  - -  Ue:v - -  1 ( 1 +  F) re r,, ' 
8rrG 

Uqg - -  87rG 
7 - F  2 ( 3 -  F ) g n r - ( 1  + P),:,, + 

2 

7" 
(7.77) 

T,,~ _ __A, ( 2 ,:~ ,:,, ,:,, + A~ ~, ) 
1" 

1" 

T,~ - --AI ( A2 -+- 2 7:2 
1' 

! J 
where r,,~ - Ee n,  + r,,i nu and r t - - r  e nu + r,,i n , .  

Employing indicial notation for the two directions, i.e. xl ,  x2, Eq. (7.76) is re- 
duced to [6] 

(7.78) 

( ~ , j -  1,2) 
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7.8 Boundary integral equations 
As in the case of the Laplace equation discussed in Chapter 3, the boundary inte- 
gral equations for the problem at hand are produced by letting point P E f~ in 
Eqs. (7.76) move to a point p E F .  We notice from Eqs. (7.58), (7.60), (7.71) and 
(7.72) that the kernels in the boundary integrals of Eqs. (7.76) are singular, that is 
they exhibit a singular behavior when P E f2 ~ p E F ,  because r ~ 0 when 
p --, q. Therefore, it is necessary to examine the behavior of the boundary inte- 
grals in Eqs. (7.76), when we let point P E f2 coincide with a point p E F .  

Figure 7.6 Geometric definitions related to a comer point P 
of a non-smooth boundary. 

We examine the general case of a non-smooth boundary, and we assume that 
P =_ p is a corner point (see Fig. 7.6). Next we consider the domain f~*, which 
results from f~ by subtracting a small circular sector with center P ,  radius c and 
confined by the arcs PA and P B .  We denote the circular arc A B  by F~ and the 
sum of the arcs A P  and PB by g. The outward normal to F~ coincides with the 
radius. Moreover, a is the angle between the two tangents to the boundary at point 
P .  Obviously, it is 

gim F~ - 0 
r 

and the chords PA and PB become tangents to the boundary at point P for 
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Using the aforementioned notation, we apply the reciprocity relation (7.43) for the 
domain f2* with (a) b; = ( 5 ( Q - P ) ,  b~ = 0  and (b) b; = 0 ,  b~ = d i ( Q - P ) ,  
where Q c f2*, P E f2 - f 2 -  f2*. In both cases the unit load is applied at point 
P(x,y) .  Since point P lies outside the domain, the domain integrals in the left- 
hand side of Eq. (7.43) vanish. By utilizing indicial notation, we can write 

~ _ e  Tj,:(P, q)u;(q)dsq + oFF< Tji(D, q)uj(q)dsq 

= f~U; , (P ,Q)b;  dl2Q + fi._U;,:(P,q)tj(q)dsq + 

+ ~ ,  Uj~(P, q)tj(q)d,sq (7.79) 

We will examine the behavior of the integrals in Eq. (7.79) for c ---, 0. It is appar- 
ent that, in the limit, line integrals on F - g become integrals on F ,  while domain 
integrals over ~2" become integrals over f2. Therefore, it remains to examine the 
behavior of integrals on Ft .  Namely, 

gi~1~,~_~o f i" U.j, t; ds (7.80) 

and 

gi~1t< -.~ f .  7' i, u,s d.s (7.81) 

We examine first the integrals (7.80) whose kernels are the fundamental solution 
U;,. 
Using the mean value theorem of integral calculus, the integrals (7.80) can be writ- 
ten in expanded form as 

t~(q*) ('i,,~_.,, ~, ,  U~:,, d.s + t,,(q*) (!~il~,~ ~ .  U,r,: d,s 
(7.82) 

f ,  + t,,(q'l c,:.,g f, u,,,, 
where q* is a point on F~, which is generally different for each of the four terms. 
Obviously it is q* ~ p -  t ) ,  when e ~ 0. 

On the basis of Eqs. (7.58) and (7.60), we note that the integrals in Eqs. (7.82) 
involve terms of the following forms 

f, f, f f I1  - -  gnr ds , 12 - 7"~ d.s , I:~ - 7~ r,~ ds , 14  - -  ~:,~ ds 
"e "c 

As it was shown in Section 3.3, it is 
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fo ~ I~ = gnr ds - 5 gne d(-O) - e gne (01 - 09. ) 
c 1 

which in the limit yields 

gim f r gnr ds = ( 0~ - 02 ) t i m  (e gne) -- 0 
r  c e--~O 

and consequently 

I1 = 0  

It remains to find the limits of the other three integrals. We can write (see Appen- 
dix A) 

r~ - - cosO and r , ,7-s inO 

Hence, 

f F ' f O 0'~ 12 - ~ r~ ds -- " c o s  2 0 e d ( - O ) - - e  o+ sin201~ I 
2 4 o 

Ia - r~ r,i ds - cos O sin 0 e d(-O) - e c~176176 o 

14 - 7: , /ds  - -  Sill 2 0 e d ( - O )  - -  - e  20 sin 201~ I 4 o 

and consequently 

gim 1,2 = O, girn I:~ = O, gim 14 = 0 
~ ---. 0 e --, O ~ --, 0 

Thus, the last integral of Eq. (7.80) vanishes for e -~ 0 and the remaining three 
integrals in the right-hand side of Eq. (7.79) vary continuously as point P E 
approaches point p C F.  

Using again the mean value theorem of integral calculus, the integrals (7.81) with 
kernels Tj~ can be written in expanded form as 

u(q* ) gim f r T~  ds + v(q* ) e im f r T,,~ ds 
e--~O c r  ,: 

(7.83) 

u(q" ) g im f r Tcy ds + v(q" ) gim f r T,,~ ds 
e ~ O  E e - * O  r 

where q* is a point on F~, generally different in each of the four terms. 

Referring to Fig. 7.6, we note that r = angle (r, n) = 7r, where r -- e.  Therefore, 



Chapter 7 The BEM for Two-Dimensional Elastostatic Problems 227 

r,n - - c o s r  and r t - - s i n r  

Consequent ly ,  using Eqs. (7.71), (7.72) and (7.67) and taking into account  that 
ds - r d ( - O )  - - c  dO (see Fig. 7.6 and Section 3.3), we obtain 

Qx - g i m  f r  T~xds  - gim f r  A--L(A2 + 2r~ )r,,~ds 
~--- ,0 e g---*O c r 

I + K  

87r 
ol o, / (7.84) 4 [0]o 2 + [s in20]o  ~ 

1 + i 7  

s,~x - gim f r  T,~xds- gim f r  A--L(2r<r, qr,,~ + A27:t)ds 
s ~ O  e s--- ,0 E r 

1 + K Ol 
[cos 20 ]o2 (7.85) 

8~r 

c - - , O  ~- e - - ,O  c r 

0, ( 7 . 86 )  1 + r; [cos20]o., 
87r 

c - - , ( )  "c " e - - , ( )  "- I '  

I + K  

8~- 

Ol Ol 
4 [0]o. _ [ s i n 2 0 ] o  ' 

1 +i7 - 
(7.87) 

Obviously ,  at points p where the boundary is smooth it is 

Oi 
[0]o., - O1 - 0 2  - 7r 

Oi 
[cos 20 ]o., - cos 201 - cos 20~ - c o s  2 ( 0 2  q- 7r) - c o s  202  - 0 

[sin 20] 0' 0.2 - sin 201 - -  sin 202 -- sin 2(02 -4- 7r) - sin 202  - -  0 

and Eqs. (7.84) through (7.87) become 

1 
E(z -- 2 '  C,iz -- 0 

_ 1  
C@ -- O, C,A~j -- 2 

(7.88) 
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On the basis of the previous discussion, the boundary integral equations (7.79) may 
be written now in matrix form as 

C(x C~lx 

C~y ET/y 

//, 

V s U~ U,~ 

U~y U,ly 

b~ U~x U,7~, 

U~y U,/y 

t~ 

T~x T~/z 

~y ~y t u } ds  (7.89) 
V 

or using indicial notation 

(7.90) 

Apparently, it is c 0 - �89 6,:j at points p where the boundary is smooth. 

7.9 Integral representation of the stresses 

The stress components cry:, cr~j and 7-:,::j at a point P(x, y) inside the domain ~'2 are 
derived from Eqs. (7.3). Thus, introducing the displacement components u and v 
from Eqs. (7.76) yields 

(7.91) 

or setting 

cry:,/ -- A (U,/ ...... + U,/:j,u ) + 21 t U,/ .... t (7.92) 

~:~,1 -- A (T,I~,~ + T,~:v,u) + 2/ t  T,, ..... t (7.93) 

Eq. (7.91) becomes 
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cr~ - f ~ ( a.r br + cr.~ b~ ) d~ + f r  (cr~r tr + cr.. t~ ) ds 

(7.94) 

The quantities or< and ~r,,~ express the stresses a ,  at point (x, y )E  Q for unit 
loads applied at point ({,r/) in the x -  and y-direct ion,  respectively (see 
Eqs. (7.65) and (7.68)). Similarly, the quantities g,~ and g,,~ express the stresses 
a,. at point (x, y) ~ Q. due to unit displacements applied at point ({, r/) in the x -  
and y-direction,  respectively. 

Similarly, we obtain 

~ - f ,  ( ~e  be + cru,, b,, ) d~ + f r ( cr:,jr t ~ + au,, t.~ ) ds 

- f r (  <,e ~ + ~, ,  v) ds (7.95) 

r.,, - f ,  ( r~.,,e ~'e + r,:,, b,, ) d~ + f v ( r,,:je t~ + r.r~,, t,, ) ds 

- f .  ( ~.:,e u + r-~.,., v ) ds (7.96) 

where 

o':jr - A (Ur + U~:j.:,) + 21t Ur 

or,j,/ - A (U,, ..... + U,,:I.:j) + 21t U,,j.:j t (7.97) 

, ~ , ,  - A (7; ,  ....... + T,~:,,:, ) + 211, T,/,, ,, t (7.98) 

r,y< - I* (Ue .... :, + Ue.v.,) 

7-~,1 - / L  (U,,~.~ + U,,~., ) t (7.99) 

~-'~ - l~ (r~,~ + rv.,.) 

r~,, - IL (7,, .... y + T,,y.x) t (7.100) 

The stresses c~,r cr,,~, c,ur cry,~, %:< and 7 ,~  are given by Eqs. (7.66) and 
(7.69), whereas ~ < ,  ~,,~, ~ur ~y,~, "r--,:j~ and Y,:y,~ are derived by introducing 
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Eqs. (7.71) and (7.72) in Eqs. (7.93), (7.98) and (7.100), and by performing the 
involved differentiations. Thus, we obtain 

a-"~(- r-r~ [2r,~r,n ( 1 - 4 r , ~ ) +  (2r,~ + 1)~1 

A3 2 O"--xrl - -  - - ~  \ ( - - 8  ~,x r, y r, n -Jr- 2 r, x r, y n z  + ny  \ ) 

A3 
- 7 ( - s  + 2 + }- (7.101) 

_ Aa 

T~( -- O"z,q 

where A:~---2/LA1. 

7.10 Numerical solution of the boundary integral equations 

7.10.1 E v a l u a t i o n  of  the u n k n o w n  b o u n d a r y  quant i t i e s  

The boundary integral equations are solved using the BEM with constant boundary 
elements. The boundary is divided into N constant elements. Thus the distribution 
of the displacements and tractions are taken constant on each element and equal to 
their value at the nodal point, which lies at the midpoint of the element. 

Denoting by {u} ~ -  {u i v ~ }T and {t} i -  {t~ t~ }7" the displacements and trac- 
tions at the /- th node and taking into account that the boundary is smooth at the 
nodal point of the constant element, Eqs. (7.89) can be written as 

N N 
l{u} '  + E [ H ]  ~j {u} j -- E[G]iJ {t} J + {F} i 
2 j=~ j=t 

(7.102) 

where 

[ G ] , J  - 

~ U<~(q, p,)d,s~ 

l r  U~y(q, pi)dsq 

f rj UTiz(q, pi ) dsq 

f v j U,y ( q, pi ) dsq 
(7.103) 
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[/~],J - 
frjT~x(q, Pi)dsq 

f r j  TCu (q' p~ ) dsq 

f r j T,l~(q, Pi ) dsq 

f rj T~y(q, pi ) dsq 
(7.104) 

and 

f~ [ U~y(O, p, ) b~(O) + U,,y(O, p, ) b,,(O) ] daQ 
(7.105) 

with p , , q E F  and Q c Q .  

Equation (7.102) relates the displacements of the i- th node to the displacements 
and tractions of all the nodes including the i- th node. 

Applying Eq. (7.102) to all the boundary nodal points yields 2N equations, which 
can be set in matrix form as 

[H]{u} -[G]{t} + {F} (7.106) 

where 

1 [It] - [t)] + 2[/] (7.107) 

The dimensions of  the matrices [tt] and [G] are 2N x 2 N ,  and those of  the vec- 
tors {u} ,  {t} and {F}  are 2 N .  They are defined as 

[C] - 

[c ] "  [c] '~ 

[c]*' [c] ~ 
�9 �9 

[c,] ~' 

[G] IN 

(7.1o8) 

[/~] - 

[/~1 ~ 
[/~]~l 

[/~1 ~ 

[ftl 1~ [/~11~ 

(7.109) 

and 
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{u} = 

{u}' {t}' 

{t}- �9 ,~ . ,~ 

{u} N {t} N 

{F} = 

{ F }  1 

(7.110) 

The 2N equations within the matrix Eq. (7.106) contain 4N boundary values, that 
is 2N values of displacements and 2N values of tractions. However, a total of 
2N values are known from the boundary conditions. Consequently, Eqs. (7.106) 
can be used to determine the 2N unknown boundary values. It should be noted 
that rearrangement of the unknowns is necessary for mixed boundary conditions. 
After doing so the following system of 2N linear equations is obtained 

[A]{X} = {R} + {F} ,(7.111) 

where [A] is a square coefficient matrix having dimensions 2N • 2N,  {X} is the 
vector including the 2N unknown boundary values and {R} is a vector resulting 
as the sum of the columns of the matrices [G] and [H] multiplied by the respective 
known boundary values. Columns originating from matrices [HI and [G] should 
have their sign switched, when they are moved to the other side of the equation�9 
Special attention should be paid in the case where only boundary tractions are pre- 
scribed, that is when the vector {t} in Eq. (7.106) is known. For boundary condi- 
tions of this kind, (case (iv) of Eqs. (7.21), the displacements are not determined 
uniquely, because they also include a rigid body motion. This is reflected in the 
matrix [HI whose rank is 2N - 3 and therefore can not be inverted. To overcome 
this problem we restrain the rigid body motion. For this purpose the body is sup- 
ported by setting three elements of the vector {u} equal to zero. Attention should 
be paid in selecting the elements in order to exclude any infinitesimal kinematic 
indeterminacy of the body, which would lead to an ill-conditioned matrix [A]. 

7.10.2 Evaluation of displacements in the interior of the body 

The system of Eqs. (7.111) is solved for the unknown boundary values of the 
displacements and tractions. Thereafter all the boundary quantities are known and, 
consequently, the displacements at any point P~(x,,y,) inside the domain $2 can be 
evaluated using Eq. (7.76), which after discretization becomes 

N N 

j=l j=l 
(7.112) 

The matrices [G] ~ and [/~]~J as well as the vector {F} ~ are evaluated according to 
Eqs. (7.103), (7.104) and (7.105), respectively, with P C f~ in place of p, r F .  
The superscript i is pertaining now to point P,(z,,y,) inside f2 and not to one of 
the boundary nodes. 
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7.10.3 Evaluation of stresses in the interior of the body 

The stresses at any point P~(xi,y,) inside the domain f2 are evaluated using 
Eqs. (7.94), (7.95) and (7.96), which after discretization are written as 

O'x 

O'y 

T~j 

N N 
_ ~-~. [cr]ij {t}J _ ~--~. [ff]O {u}J + {S}i (7.113) 

3=1 j=l  

The matrices [c~] v and [~];J as well as the vector {5'} i are computed from the fol- 
lowing relations 

or] = 

f r , o.~ ( q , ~ ) dsq 

~ .  true(q, ~ )  dsq 

f r , %Je ( q' Pi ) dsq 

f r , c~ ~,, ( q , P, ) ds,, 

~ ,  a y,, (q, ~ ) dsq 

f r , 7-,y,, ( q, ~ ) dsq 

(7.114) 

[g]'J = 

f ,  <.e(q. l'.)d.~., 

f i ~,,~ ( t', ) d,sq q, 
"J 

q, 

f .  g.,.,,(q, t; ) ds,, 

f ,  <.,, ( q, ~ ) d.~,, 

(7.115) 

{ S }  i = 

f,[~(Q, I~)b~(Q)+ ~,,(O,I;)~,,(Q)]d~ 
f,[~(Q, n)~(Q)+ ~,,,(Q, n) ~,,(O)] d~ (7.116) 

7.10.4 Evaluation of stresses on the boundary 

The stresses c7,, Cry and 7-~ on the boundary can be evaluated from Eqs. (7.94), 
(7.95) and (7.96) by letting point P E ~2 approach point p c F and following a 
limiting process similar to that presented in Section 7.8. This, however, is not rec- 
ommended due to the difficulties arising from the behavior of the line integrals as 
P C Q moves to p E F,  and on the other hand from the need to treat singular and 
hyper-singular line integrals. For this reason, the technique that follows is preferred 
as a much simpler and straight forward one. 
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The derivatives of the displacements u and v along the tangent to the boundary 
are given as 

Ou Ou Ou 
- -  - -  - - - -  n y  - F -  - -  n x  

Ot Ox Oy 

Ov Ov Ov 
- -  = ~ - -  n y  - t -  - -  n x  

Ot Ox Oy 

(7.117) 

These derivatives can be computed from the boundary values of u and v through 
numerical differentiation (see Section 6.2.2). 

Collecting Eqs. (7.23) and (7.117), we can write 

( A + 2 p ) n ~  #ny #nu An~ 

Any # nx # n~ (A+2/z)n,~ 

-ny  n~ 0 0 

0 0 -n~ n~ 

U,x 

U,y 

V,x 

?J,y 

tx 

ty 

U,t 

V,t 

(7.118) 

Taking into account that n] + n 2 - 1, it can be readily shown that the determinant 
of the coefficient matrix in Eq. (7.118) is 

D = - t  t(A + 21 t) :x: 0 (7.119) 

Hence the derivatives of u and v with respect to x and y can always be evalu- 
ated and the stresses can be computed from the expressions 

cr~ = A (u.~: + v:,j) + 2p u,~ 

cry = A (u~ + v : j )+  2/~ u y 

7-~ = a (u,~ + v,~) 

(7.120) 

7.11 Body forces 

It becomes apparent from Eqs. (7.105) and (7.116) that the inclusion of body forces 
requires the evaluation of domain integrals. These integrals can be treated in one of 
the following ways. 

7.11.1 Direct numerical  evaluation 

The domain f2 is discretized into cells and the integration is performed using the 
procedure developed for Poisson's equation in Section 4.4. This method, however, 
has two drawbacks. The first one is that it diminishes the elegance and computa- 
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tional efficiency of the BEM by involving the difficult problem of domain discreti- 
zation. Of course, the problem does not appear as complex as in the FEM, where 
the continuous body is approximated by the discretized one. In the BEM, the dis- 
cretization is employed only to approximate the integral by a sum. Even the 
assumption of constant value of the integrand on each cell (discontinuous finite 
element) results in a good approximation for the integral. This fact is a conse- 
quence of the mean value theorem of integral calculus. 

The second drawback of the domain integration originates from Eqs. (7.58), (7.60), 
(7.66), (7.69) and (7.101) whose integrands behave like g n r ,  1 / r ,  1 / r  2 or 1 / r  a, 
where r = ] P - Q ] .  These integrals become singular or hyper-singular, when 
point P lies on the cell over which the integration is performed, because point Q 
also lies on the same cell and thus r will take among others the value r -- 0. Sev- 
eral methods have been developed for the evaluation of these integrals [7]. A rela- 
tively simple but effective and accurate method is that developed by Katsikadelis 
[8], which converts the singular or hyper-singular domain integrals to regular line 
integrals on the boundary of the cell. This method is presented in Appendix B. 

7.11.2 Evaluation using a particular solution 

In this case the solution of Navier's equations, Eqs. (7.19), is obtained as a sum of 
two solutions 

'll, - -  "el,() - ~  ~/LI, 'l~ -- ~'() + 'Vl (7.121 ) 

where u(), v() is the solution of the homogeneous equation and u l ,  'Ul a particular 
one of the non-homogeneous equation. Using the notation of Eqs. (7.45) for the 
differential operators, the Navier equations are written as 

N.(,u,, v) - b.,. '~  

J N: , (u ,  v) - b:, 
in ~ (7.122) 

or using Eqs. (7.121) and taking into account that the operators N:,, and N:j are 
linear, we can obtain the solution u0, v0 from the following boundary value prob- 
lem 

N~ (uo, vo) - 0 "~ 

J N,, (Uo, Vo ) - 0 

in ~2 (7.123) 

and 

(i) u0 - ~ -  Ul, v0 - ~ -  vl on F1 (7.124a) 

(ii) u0 - ~2-- Ul, (t:j),, - -~ - t ~  on 1-'2 (7.124b) 
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(iii) (t~)0 - t~ - t~, v0 - v - -  vl on 1-'3 (7.124c) 

(iv) (tx)0 - t~ - t ~ ,  (tu)0 - t~ - t~ on r4 (7.124d) 

The above types of boundary conditions result from Eqs. (7.21) when these are 
expressed in terms of u0 and v0. The traction components t~ and t I are obtained 
from Eqs. (7.23), if u ,  v are replaced by Ul, Vl. 

The particular solution is obtained from the equations 

N,;(Ul,  vl ) - b:~ 

J N~(Ul ,  v l )  - b,~ 

It is apparent that the determination of the particular solution should precede the 
solution of  the homogeneous equations. The particular solution can be obtained 
from Eqs. (7.49) 

2 0 
2 G  ",1 = V'201 - 

I + F  

0r  O(;l + 
O:z: Oy  

2 0 ( (-)(hl 0'~'1 
2G 'Vl = V='('I - [ + 

1 + F ~ O x  Oy  

(7.125) 

The functions 0~, ('l are the components of the Galerkin vector and are deter- 
mined as a particular solution of the following equations 

V z0~ - -(1 + fi)b:,. (7.126a) 

V l'(,l - -(1 + F)b,l (7.126b) 

Equations (7.126a) and (7.126b) represent the bending equation of a thin plate sub- 
jected to transverse loads - (1  + ~7)b,. and -(1 + fi)b:l, respectively. A particular 
solution of these equations call be obtained using the method presented in [9]. This 
method is an extension of that presented in Section 3.4.2 for the harmonic equation 
to the case of the biharmonic equation. 

By introducing the variables 

z - x + iy  and -5 - x -  iy  (7.127) 

Eq. (7.126a) is transformed to 

16 0 4 ~  = b, (z , -Z)  (7.128) 
Oz20-~ 2 
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where it has been set 

_ _  01 (7.129) 
(1 + ~7) 

m 

A particular solution 01(z,2") is readily obtained by integrating Eq. (7.128) con- 
secutively four times. The resulting arbitrary integration functions can be ne- 
glected, since we are seeking a particular solution. 

Subsequently, back substitution of z and 2 by virtue of Eqs. (7.127) yields 
4h (x, y). Similarly, we find the particular solution ~1 (x, y) of Eq. (7.126b). 

Example 7.1 

Determine the particular solution, if the body force bx = P9 cos 0 ,  by = P9 sin 0 is 
the weight of the body, which acts in the direction of the vector (cos 0, sin 0). We 
denote by p the mass density per unit area and by 9 the acceleration of gravity. 

First we establish the components of the Galerkin vector. Equation (7.128) is 
written 

16 0401 
0z202- 2 = P g cos 0 

Consecutive integrations yield 

p g cos O 2 -2'2 P g r4 
- -  ~ Z ~ ~ COS 0 

64 64 

o r  

- k 7 .4 cos 0 

where it was set 

p .q ( l+  F) 
k - -  and 'l "2 - x  2+92  

64 

Similarly, we have 

~1 - -  k r 4 s i n  0 

Substituting the above expressions for 0~ and '/~)1 into Eqs. (7.125) yields 

U 1 = 
p 9  

4G 
{r2cos0 I + F [ ( 3 x  2 + y e ) c o s O + 2 x y s i n O ] }  

8 

and 
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V l  - - -  
p9 
4G 

{r 2 s i n 0 -  1 + K [2xycosO + (x 2 + 3y 2)Sin0]} 
8 '  

If the y-axis is taken in the vertical direction, it will be 0 - - ~ - / 2 ,  c o s 0 -  0, 
sin 0 - - 1, and the particular solution is simplified as 

pg( l+  H) 
Ul = - xy 

16G 

V 1 = 
p9 

16G 
1(1 + P)(x 2 +3y 

7.11.3 Transformation of the domain integrals to boundary integrals 

This method is closer to BEM's logic, since domain integration is avoided and the 
pure boundary character of the method is maintained. The transformation of the 
domain integrals to boundary line integrals may be accomplished by different tech- 
niques. Two methods are going to be presented in the sequel. One is general and it 
applies to body forces having an arbitrary distribution, while the other one is used 
for body forces which are derived from a potential function. 

(a) Body forces having arbitrary distribution 

This method is analogous to that presented for Poisson's equation in Sec- 
tion 3.5 (ii) [10]. 

First, using the procedure presented in the previous section, we determine a par- 
ticular solution ui, '~'1 for Navier's equations, 

N.(u,,  vl) - b:r 

Nu(ul, vl) -- b:l 

Next the reciprocal relation (7.43) is employed consecutively for 

(i) u - u 1 ,  v - v l  and u * - U ~ x ,  v * - U , ~ ,  

(ii) u - u l ,  v - v l  and u - U ~ y ,  v --U,ly 

and having in mind that the fundamental solution UCx, U,~x, Ur U,y satisfies the 
equations 

Nx(U~,  U,,~ ) - 6(Q - P) 

Ny(U~x, U,,x ) - 0 t (7.130a) 
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and 

Nx(Uey, U,~y ) = 0 

Ny(U~y, U,y ) = ~5(Q - P) 1 
we obtain the components Fx and Fy of the vector (7.105) as 

Fx(P) = Cll Ul(P)-+- C21 v , (P)  

(7.130b) 

+ fr[T&(q,P)u, (q)  + T, ix(q,P)v,(q)]dsq (7.131) 

F~(P) = E12 U l ( P ) +  c22 f l ( P )  

+f [ (q, (7.132) 

where the coefficients % take the value c u = 6 u for P E f2, while for P E 1-' 
they are evaluated from Eqs. (7.84)-(7.87). If the boundary is smooth at point 
PEF,itis %-�89 u. 
It should be noted that Eqs. (7.131) and (7.132) hold for body forces b( and b,~ 
which are distributed over the whole domain f~. If b( or b,~ act only on a subre- 
gion f~* C ~2, then for points P outside ~2' it is r = 0 and thus terms outside 
the integrals vanish. Therefore, Eqs. (7.131) and (7.132) can only be employed for 
points P c (~2" u F*). 

(b) Body forces derived from a potential function 

The previous case, where b~ and bq are arbitrary functions, is rather theoretical. 
On the other hand, the case where the body forces are derived from a potential 
function is important and of special practical interest, e.g. gravitational forces. The 
conversion of the domain integrals to boundary integrals can be accomplished as 
follows. 

If V = V(~, ~/) is the function that represents the potential, then the components of 
the body force are obtained as 

OV OV 
b~ = ~;0-- 7 , b,~- (7.133) 

071 

Moreover, the potential function satisfies the equation 
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V2V = 0 (7.134) 

The integral F, defined by Eq. (7.105) is written as 

(7.135) 

where nx and ny are the direction cosines of the unit vector n which is normal to 
the boundary at point ({, r/). The above transformation of the domain integral is 
achieved by employing Eqs. (2.7) and (2.8). 

Incorporating Eqs. (7.58), the domain integral of the right-hand side of Eq. (7.135) 
becomes 

f ,  (U~,,e + U,,,,,, ) V d~ - - 2(1 - F) ~ ,  (gnr), e V d~ 
8rrG 

(7.136) 

Further, setting 

4~ _ 1 r2gnr (7.137) 
4 

we find that 

2 V ~,~ - (g,zT"),e 

and then applying Green's identity (2.16) for v = V and u = O,e we obtain 

v o e, e _ 4,,e o__y_v 

On On 
ds (7.138) 

Hence, Eq. (7.135) can be finally written as 

F = -  ( 1 - ~ ) Z "  
4rrG 

V O c& _ 4~ 0 V 
On 

ds + f , ( U ~ n ,  + U,,~n, )ds (7.139) 

Similarly, the contribution of the body forces in the y-direction may be obtained 
in terms of boundary-only integrals as 

F ' J -  ( 1 -  ~7)fv 
4rrG 

V O c h.,; _ oh.,, 0 V ) Or~ -~n ds + fv(U~vn, + U,,yny )ds (7.140) 
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7.12 Program ELBECON for solving the plane elastostatic 
problem with constant boundary elements 

On the basis of the analysis presented in the previous sections a computer program 
has been written in the FORTRAN language [6]. It solves the two plane elasticity 
problems, namely the plane strain and the plane stress for plane bodies which may 
have holes. For the simplicity of the program, the body forces are not included. The 
program employs constant elements for the discretization of the boundary integral 
equations. The structure of program ELBECON is shown in the macro flow chart 
of Fig. 7.7. 

Main program 

The main program defines the parameters N, NB and IN, which specify the number 
of boundary elements, the number of boundaries and the number of internal points 
where the solution will be computed, respectively. It opens two files, the file 
INPUTFILE, which contains the data and the OUTPUTFILE file, in which the 
results are rendered. Subsequently it calls the following ten subroutines: 

INPUTEL Reads the data from INPUTFILE. 

GMATREL Forms the matrix [G] defined by Eq. (7.108). 

HMATREL Forms the matrix [tt] defined by Eqs. (7.107) and (7.109). 

ABMATREL Rearranges the matrices lit] and [G] on the basis of the given 
boundary conditions and forms the matrix [A] and the vector 
{B} = {R} of Eq. (7.111). 

SOLVEQ Solves the system of linear equations [A]{X} = {R) using 
Gauss elimination. 

REORDEREL Rearranges the boundary values and forms the matrices {u}, 
{v}, {t.r} and {t~}. 

UVINTER Computes the displacements u and v at the internal points 
using Eq. (7.112). 

STRESSB Computes the stresses err, cr:j and "r,::j at the boundary nodal 
points using Eqs. (7.120). 

STRESSIN Computes the stresses cr=~, au and 7~:u at the internal points 
using Eqs. (7.113). 

OUTPUTEL Writes the results in OUTPUTFILE. 

The variables and the arrays used in the program together with their meaning are 
given below: 

N Total number of boundary elements and hence of boundary 
nodes for constant boundary elements. 
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Figure 7.7 Macro flow chart of  program ELBECON. 
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IN 

NB 

NL 

IPLANE 

EL 

GL 

PN 

KCODE 

XL, YL 

XM, YM 

XIN, YIN 

UB, VB 

TXB, TYB 

UIN, VIN 

SXIN, SYIN, 
SXYIN 

SXB, SYB, 
SXYB 

Number of internal points, where the displacements and the 
stresses are computed. 

Number of boundaries. 

One-dimensional array of dimension NB containing the serial 
number of the last element of each boundary. 

Integer specifying the type of elasticity problem. IPLANE=0 
for plane strain; IPLANE = 1 for plane stress. 

Young's modulus of elasticity, E .  

Shear modulus, G. 

Poisson's ratio, u.  

One-dimensional array specifying the type of boundary condi- 
tions at node I (I= 1,2,...,N) and taking the values: 

KCODE(I)=I when u and v are prescribed 

KCODE(I)=2 when tx and ty are prescribed 

KCODE(I)=3 when u and ty are prescribed 

KCODE(1)=4 when tx and v are prescribed 

One-dimensional arrays containing the x and y coordinates of 
the extreme points of the elements. 

One-dimensional arrays containing the x and y coordinates of 
the boundary nodes. 

One-dimensional arrays containing the x and y coordinates of 
the internal points, where the displacements and stresses are 
computed. 

One-dimensional array defined in Eq. (7.111). 

One-dimensional arrays. At input they contain the prescribed 
boundary values, i.e. displacements and/or tractions. At output 
they contain the boundary nodal values of u and v. 

One-dimensional arrays containing at output the values of the 
boundary tractions t~ and ty. 

One-dimensional arrays containing the computed values of the 
displacements u and v at the internal points. 

One-dimensional arrays containing the computed values of the 
stress components crx ,cr~ and 7-~y at the IN internal points. 

One-dimensional arrays containing the computed values of the 
stress components crx, cry and 77 at the N boundary points. 
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Subroutine INPUTEL 

The subroutine INPUTEL reads all the data required by the program using free 
FORMAT. The data have been written in INPUTFILE, to which the user has given 
a specific name as required by the main the program. This file contains the fol- 
lowing data: 

1. User's name. One line containing the name of the user. 

2. Title. One line containing the title of the program. 

3. The code number of  the problem type. IPLANE=0 for plane strain; IPLANE=I 
for plane stress. 

4. Elastic constants. Modulus of elasticity EL and Poisson's ratio PN. 

5. The number of  the last element of  each boundary. NB integers forming the en- 
tries of the array NL. 

6. The extreme points of  the boundary elements. N couples of values consisting of 
the coordinates XL, YL of the extreme points of the boundary elements. They 
are read in the positive sense, that is, counter-clockwise on the external bound- 
ary, and clockwise on the internal ones. 

7. Boundary conditions. N triples of numbers consisting of the values of KCODE, 
u or t~ and v or t~. More specifically: 

KCODE=I : u ,  v 

KCODE=2: t.r, tu 

KCODE=3: u ,  ty 

KCODE=4: t.r, v 

8. Coordinates of  the internal points. IN couples of values consisting of the coordi- 
nates XIN and YIN of the internal points, where the values of the displacements 
u ,  v and stresses cry, cru, "r~y will be computed. 

Finally, the subroutine INPUTEL writes the data in OUTPUTFILE, to which the 
user gives a specific name. 

Subroutine GMATREL 

The subroutine GMATREL forms the matrix [G] defined by Eq. (7.108). First, the 
submatrices [G] ~j (i,j  = 1 ,2 , . . . ,N) ,  given by Eq. (7.103) are evaluated and subse- 
quently placed in matrix [G]. The elements of the matrix [G] iJ are line integrals of 
the fundamental solution along the constant boundary element. We distinguish two 
cases for the position of the elements with respect to the diagonal of the matrix: 

(i) Off-diagonal elements, i ~: j 

In this case the reference point P~(z~, y,) lies outside the j - t h  element, over which 
the integration is performed, and thus the distance r - - [ q -  P,[ never vanishes. 
Consequently, the line integrals in Eq. (7.103) are regular and they are evaluated 
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using a four-point Gauss integration by calling the subroutine RLINTG (see 
program LABECON).  

(ii) Diagonal elements, i = j 
In this case the reference point P,(z, ,y,)  lies on the j - t h  element, over which the 
integration is performed. The distance r = J q -  P~] vanishes for P, = q and con- 
sequently the line integrals in Eq. (7.103) become singular. For this reason, their 
evaluation is carried out analytically in the interval [e, g,/2] and then, we take the 
limit e ~ 0. It should be mentioned that the integral in the interval [e,g,/2] is 
equal to that in I - g , / 2 , - e ] .  

O 

i + 1  '"" -}gi 

,,,.._ 
" - - 3 ;  

Figure 7.8 Element subdivision for the analytical evaluation of  the 
singular integrals of  submatrices [G] ~z . 

Noting that 

X i + l  - -  Xi Y i + l  - -  Yi  r,~ - cos c~ - , 7::j - sin (t - (7.141 ) 
g~ g,. 

where c~ - a n g l e ( x , r )  - constant for each element (see Fig. 7.8), Eqs. ( 7 . 5 8 ) ,  

(7.60) and (7.103) yield 

- - 

{ r e , ~ 2  Fe,/2 } 1 fire 2 ( 3 - f i )  gnrdr-2(l+iT) cos 2c~j~ dr 
87rG ~--~o 

1 f i r e { 2 ( 3 -  fi)[rgnr r-]c,/2_2(l+F)cos2o~[ rle,/2} 
87rG ~ o  ~c ,c 

gi 
87rG 

(3- gn- - -1  2 
- (1 + r~)cos 2 c~ (7.142a) 



246 BOUNDARY ELEMENTS 

i i 

{ r } 1 gim (1+~-)2  cos a s i n o ~ d r  
87rG ~ 0  o~ 

87rG 

Fg,/2 
(1 + ~-) 2COSa sin aJo dr 

_ g i ( l + ~ ) c o s a s i n a  
- s T b  

(7.142b) 

i , 

1 gim 2 ( 3 - ~ )  g n r d r - 2 ( l + P )  sin 2a  dr 
87rG ~-~o 

1 gim 2(3-~7) r g n r - r  
87rG ~ o  

led2 } 
- 2 (1 + P) sin 2 c~ [ r ~ 

87rG 
( 3 - P )  

f 
gn "~__2_, _ 1 

2 
- (1 + iT)sin 2 c~ (7.142c) 

For the evaluation of G;~ and G20.2 the constant term in the expressions of U~, and 
U,~y was neglected, since it does not influence the integral equations. Indeed, the 
contribution of a constant C to Eqs. (7.76) is 

i .  

in v ( p )  

(7.143) 

according to the equilibrium equations of the external forces acting on the body in 
the x -  and y-directions, respectively. 

Subrout ine  H M A T R E L  

This subroutine forms the matrix [HI defined by Eq. (7.107). First, it evaluates the 
submatrices [/7/],j ( i , j -  1,2,. . . ,N) using Eq. (7.104), which are then placed in 
matrix [/J]. We distinguish again two cases for the position of the elements with 
respect to the diagonal of the matrix: 

(i) Off-diagonal elements, i ~ j 

As it was explained in the case of matrices [G] ~ , the distance r - I q -  P,[ does 
not vanish. Therefore, the line integrals are always regular and can be evaluated 
using a four-point Gauss integration by calling subroutine RLINTH (see program 
LABECON). 
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(ii) Diagonal elements, i - j 

In this case the reference point P,(xi, yi) lies on the j - t h  element over which the 
integration is performed. The distance r - I q -  Pzl vanishes for P, - q and con- 
sequently the line integrals of Eq. (7.104) become singular. 

The integration of the kernels given by Eqs. (7.71) and (7.72) requires evaluation 
of singular integrals having the form 

f r r'--gn ds and f r r-Z ds 
~ r  z ? "  

which can also be written as (see Section 4.3) 

f r  c~ and f r  s inCds  
, r i r 

where r - angle(r, n) is shown in Fig. 4.4. 

The first integral equals to zero as it was proved in Eq. (4.28b). Moreover, using 
Eqs. (4.21) and (4.27), the second integral is written 

f_ 1 s ine  sin r ds - d( 

_ _  __~11 d l ~ [ _ t  - f } - I  d[~[ _~ 0 

since r - 37r/2 when 0 _< ~ _< 1 and r - 7r/2 when - 1  _< { _< 0. Hence 

-[o] 

and 

1[i]_ [HI" -[O]" + 2 
1/2 0 

0 1/2 
(7.144) 

Subroutine A B M A T R E L  

This subroutine rearranges the columns of matrices [G] and [H], and creates the 
matrix [A] and the vector {R} of Eq. (7.111). The columns of matrix [A] consist 
of all the columns of matrices [G] and [H] that correspond to the unknown bound- 
ary values of u ,  v, t, and ty. The vector {R} results as the sum of those columns 
of [G] and [H] which correspond to the known values of u ,  v, tx and t~ after 
they have been multiplied by the respective values. It should be noted that a change 
of sign occurs, when the columns of [G] or [H] are transferred to the other side of 
Eq. (7.106). 
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Subroutine SOLVEQ 

This subroutine solves the system of equations A X  = R calling the subroutine 
LEQS. The solution is obtained by Gauss elimination and stored in the vector R .  
The output parameter LSING takes the value LSING = 0, when the matrix A is 
regular, or LSING "- 1, when the matrix A is singular (see program LABECON). 

Subroutine R E O R D E R E L  

This subroutine rearranges the vector {R} on the basis of the given boundary 
conditions and forms the vectors {u}, {v}, {t~} and {tv} of the boundary dis- 
placements and tractions. 

Subroutine UVINTER 

This subroutine computes thedisplacements u and v at internal points utilizing 
Eq. (7.112). The matrices [G] ~3 and [H] 'j are evaluated by subroutines RLINTG 
and RLINTH. This is possible because r - - ] P -  q[ ;~ 0 for all points P E f~ and 
thus the involved line integrals are always regular. 

Subroutine STRESSB 

This subroutine computes the stresses crx, cry and 7-~,y at the boundary nodal 
points. First, it evaluates the derivatives u,t and v t in the direction of the tangent 
to the boundary via finite differences (see Section 6.2.2), and then computes the 
stresses using Eqs. (7.118) and (7.120). 

Subroutine STRESSIN 

This subroutine computes the stresses cry, or:,1 and r~,~j at the internal points on the 
basis of Eqs. (7.1 13). 

Subroutine OUTPUTEL 

This subroutine writes all the results in the output file. 

The listing of program ELBECON is given below: 

C 
PROGRAM ELBECON 

C 
C 
C This program solves the two dimensional (EL)asticiy problem 
C using the (B)oundary (E)lement method with (CON) stant 
C boundary elements for domain with multiple boundaries 
C 

USE MSIMSL 
IMPLICIT REAL*8 (A-H,O-Z) 
CHARACTER*I5 INPUTFILE,OUTPUTFILE 

Set the maximum dimensions 

PARAMETER (N=44) 
PARAMETER (IN=3) 
PARAMETER (NB= i) 
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C 

C N= Number of boundary elements equal to number of boundary 
C nodes 

C 
C IN= Number of internal points where the function u is calculated 

C 
C NB= Number of boundaries of the multiple boundary domain 

C 
COMMON EL, GL, PN, ALAMDA 
DIMENSION NL (NB), KCODE (N) 
DIMENSION XL (N+I) ,YL (N+I) ,XM(N), YM(N) ,G(2*N, 2*N) ,H(2*N, 2*N) 

DIMENSION UB (N), VB (N), TXB (N), TYB (N), A (2*N, 2*N), R (2*N) 
DIMENSION XIN ( IN), YIN ( IN), UIN ( IN), VIN (IN) 
DIMENSION SXIN (IN), SYIN (IN), SXYIN (IN), SXB (N), SYB (N), SXYB (N) 

C 
C Read the names and open the input and output files 

C 
WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*, ' (A) ' ) INPUTFILE 

WRITE (*, ' (A) ') ' Name of the OUTPUTFILE (max.15 characters) ' 
READ (*,' (A) ' ) OUTPUTFILE 
OPEN (i, FILE=INPUTFILE) 

OPEN (2, FILE=OUTPUTFILE) 

C 
C Read data from INPUTFILE 

C 
CALL INPUTEL (XL, YL , XIN, YIN, KCODE , IPLANE , NL, UB , VB , N, IN, NB) 

C 
C Compute the G matrix 

C 
CALL GMATREL (XL, YL , XM, YM, G , N, NL , NB ) 

C 
C Compute the H matrix 

C 
CALL HMATREL (XL,YL,XM, YM, H,N,NL,NB) 

C 
C Form the system of equations AX=B 

C 
CALL ABMATREL (G , H, A, R , UB , VB , KCODE, N) 

C 
C Solve the system of equations 

C 
CALL SOLVEQ (A, R,N, LSING) 

C 

C Form the vectors U and UN of all the boundary values 
C 

CALL REORDEREL ( R , UB, VB , TXB, TYB , KCODE , N) 

C 
C Compute the values of the displacements at the internal points 
C 

CALL UVINTER (XL, YL, X IN, Y IN, UB, VB, TXB, TYB, UIN, VIN, N, IN, NL, NB ) 
C 
C Compute the values of the stresses at the internal points 
C , 

CALL STRESSIN (XL , YL, XIN, YIN, UB, VB , TXB , TYB , 

1 SXIN, SYIN, SXYIN, N, IN, NL, NB) 

C 
C Compute the values of the boundary stresses 

C 
CALL STRESSB (XL , YL , UB , VB , TXB , TYB , SXB , SYB , SXYB , N, NL , NB ) 

C 
C Print the results in the OUTPUTFILE 
C 

CALL OUTPUTEL (XM, YM, UB , VB , TXB , TYB , XIN, YIN, UIN, VIN, 

1 SXB, SYB, SXYB, SXIN, SYIN, SXYIN, N, IN) 
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C 
C Close input and output files 
C 

CLOSE (i) 
CLOSE ( 2 ) 
STOP 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE INPUTEL (XL , YL , XIN, YIN, KCODE , IPLANE , NL , UB , VB , N, IN, NB) 

C 
C 
C This subroutine reads the input data from the input file 
C and writes them in the output file 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON EL, GL, PN, ALAMDA 
CHARACTER* 80 NAME, TITLE 
DIMENSION NL (NB), KCODE (N) 
DIMENSION UB (N), VB (N) 
DIMENSION XL(N+I),YL(N+I),XIN(IN),YIN(IN) 

WRITE (2, i00) 
i00 FORMAT(' ',76('*')) 

READ (i,' (A)') NAME 
WRITE (2,' (A) ' ) NAME 

C 
C Read the title of the program 
C 

READ (i,' (A) ' )TITLE 
WRITE (2,' (A) ' )TITLE 

WRITE(2,200)N, IN,NB 
200 FORMAT(//'DATA'//2X,'NUMBER OF BOUNDARY ELEMENTS =' 

1 ,I3/2X,'NUMBER OF INTERNAL POINTS =',I3/2X, 
1 'NUMBER OF BOUNDARIES =',I3) 

C 
C Read the type of the problem: IPLANE=0 for plane strain, 
C IPLANE=I for plane stress 
C 

READ ( 1, * ) IPLANE 
IF ( IPLANE. EQ. 0 ) THEN 
WRITE (2,700) 

700 FORMAT (/' PLANE STRAIN PROBLEM'/) 
ELSE 
WRITE (2,450) 

450 FORMAT (/' PLANE STRESS PROBLEM'/) 
ENDIF 

C 
C Read the elastic constants 
C 

READ(I,*) EL,PN 

WRITE (2,150) EL,PN 
150 FORMAT (2X, ' ELASTIC CONSTANTS : ' , ' 

1 ' POISSON RATIO =' ,F5.2/) 

IF(IPLANE.EQ.0)THEN 
EL=EL/(I. -PN**2) 

PN=PN/( 1 - PN) 
GL=EL/( 2. * (I+PN) ) 
ALAMDA=PN*EL/(I-PN**2) 
ELSEIF(IPLANE.NE.0)THEN 

ELASTIC MODULUS =',El0.4, 
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GLzEL/(2. * (I+PN)) 
ALAMDA= PN* EL / ( 1 -PN* *2 ) 
ENDIF 

C 
C Read the of the last element at each boundary 
C 

READ(I,*) (NL(I), I=I,NB) 
C 
C Read the coordinates of the extreme points of the boundary 
C elements XL, YL 
C 

READ(I,*) (XL(I),YL(I),I=I,N) 
C 
C Write the coordinates in the output file 
C 

WRITE (2,300) 
300 FORMAT(//' COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY', 

1 ' ELEMENTS',//IX, 'NODE',9X,' XL',I3X, ' YL'/) 
DO 20 I--I,N 

20 WRITE(2,400) I,XL(I) ,YL(I) 
400 FORMAT(2X, I3,2 (3X,EI4.5)) 

C 
C Read the boundary conditions and store in UB(I) and VB(I) 

C 
C KCODE(I)-I when u and v are prescribed 
C KCODE(I) =2 when tx and ty are prescribed 
C KCODE(I)-3 when u and ty are prescribed 
C KCODE(I)=4 when tx and v are prescribed 

C 
READ(l,*) (KCODE (I) ,UB (I) ,VB (I) , I-I,N) 

C 
C Write the boundary conditions in the output file 
C 

WRITE (2,500) 
500 FORMAT(//2X, 'BOUNDARY CONDITIONS'//2X, 'NODE' ,6X, ' KCODE', 

1 20X, ' PRESCRIBED VALUES '/) 
DO 30 I=I,N 

30 WRITE(2,600) I,KCODE(I),UB(I), VB(I) 
600 FORMAT (2X, I3,9X, I3,8X, El4.5,8X, El4.5) 

C 
C Read the coordinates of the internal points 

C 
READ(I,*) (XIN(I) ,YIN(I), I=l, IN) 
RETURN 
END 

C 
C 

C 
SUBROUTINE GMATREL (XL,YL,XM, YM, G,N,NL,NB) 

C 
C 
C This subroutine computes the elements of the G matrix 

C 
IMPLICIT REAL*8 (A-H, O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XL (N+I), YL (N+I), XM (N), YM (N) 
DIMENSION NL (NB) , G (2*N, 2*N) 

C 
C Compute the nodal coordinates and store them in the arrays XM 
C and YM 
C 

PI=ACOS (- i. ) 
XL (N+I) =XL (1) 
YL (N+I) =YL (I) 
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C 
C 
C~ 

DO I0 I--I,N 
XM(I) = (XL (I) +XL (I+l))/2. 

I0 YM(I) = (YL (I) +YL (I+l))/2. 
IF (NB. LE. 1) GOTO 40 
XM (NL (i)) = (XL (NL (I)) +XL (i))/2. 
YM(NL (I)) = (YL (NL (I)) +YL (I))/2. 
DO 15 K=2,NB 
XM(NL (K)) = (XL (NL (K)) +XL (NL (K-I) +I) )/2. 

15 YM(NL (K)) = (YL (NL (K)) +YL (NL (K-I) +i) )/2. 

Compute the elements of matrix G 

40 DO 20 I=I,N 
X0 =XM (I) 
Y0=YM (I) 
DO 20 J=I,N 
Xl=XL (J) 
YI=YL (J) 
X2=XL (J+l) 
Y2 =YL ( J+ 1 ) 
IF (NB. LE. I) GOTO 60 
IF (J. NE. NL ( 1 ) ) GOTO 50 

X2 =XL ( 1 ) 
Y2=YL (i) 
GOTO 60 

50 DO 30 K=2,NB 
IF (J.NE.NL (K)) GOTO 30 

X2=XL (NL (K-I) +I) 
Y2=YL (NL (K- i) +i) 
GOTO 60 

30 CONTINUE 
60 I F ( I. NE. J) THEN 

CALL RLINTG (X0, Y0, Xl, Y1, X2, Y2, RESll, RES12, RES22 ) 
G (2"I-I, 2*J- i) --RESll 
G (2"I-i, 2*J) =RESI2 
G (2.I, 2*J-l) =RESI2 
G (2.I, 2*J) =RES22 
ELSEIF ( I. EQ. J) THEN 
DX-X2 -XI 
DY=Y2 -YI 
SL-DSQRT (DX* * 2 +DY* * 2 ) 
COSA*DX/SL 
SINA-DY/SL 
SPIGmSL/(8. *PI*GL) 
RESII=-SPIG* ( (3. -PN) * (DLOG (SL/2.) -i. ) - (i. +PN) *COSA**2) 
RESI2-SPIG* ( 1. +PN) *COSA*SINA 
RES22--SPIG* ( (3. -PN) * (DLOG (SL/2.) -i. ) - (I. +PN) *SINA**2) 
G (2"I-1,2*J- I) -RESI1 
G (2"I-i, 2*J) =RESI2 
G (2"I, 2 *J- i) =RESI2 
G (2"I, 2*J) =RES22 
ENDIF 

20 CONTINUE 
RETURN 
END 

SUBROUTINE RLINTG (X0 , Y0 , X1 , Y1 , X2 , Y2 , RESII , RESI2 , RES22 ) 

This subroutine computes the off-diagonal elements of the 
matrix G 
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C RA= The distance of the point O to the Gauss integration point 
C on the boundary element 
C 
C WG= The weights of the Gauss integration 
C 
C XI= The coordinates of the Gauss integration points in the 
C interval [-1,1] 
C 
C XC,YC=The global coordinates of the Gauss integration points 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XC(4) ,YC (4) ,XI (4) ,WG(4) 
DATA XI/-0.86113631, -0.33998104,0.33998104,0.86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
PI=ACOS (-I. ) 
AX= (X2-Xl)/2. 
AY= (Y2-YI)/2. 
BX= (X2+Xl)/2. 
BY= (Y2+YI)/2. 

C 
C Compute the Jacobian 
C 

SL=DSQRT (AX* * 2 +AY* * 2 ) 
C 
C Compute the line integral 
C 

RESII=0. 
RESI2=0. 
RES22=0. 

PIG-I. / (8. *PI*GL) 
DO 30 I=l, 4 
XC ( I ) =AX*XI ( I ) +BX 
YC (I) =AY*XI (I) +BY 
DX-XC (I) -x0 
DY-YC ( I ) -Y0 
RA.DSQRT (DX* * 2 +DY* * 2 ) 
COSAIDX/RA 
SINAIDY/RA 
RESlI-RESlI-PIG* ( (3. -PN) *DLOG (RA) - (I+PN) *COSA**2) *WG (I) *SL 
RESI2-RESI2+PIG* (i. +PN) *COSA*SINA*WG (I) *SL 

30 RES22=RES22-PIG* ( (3. -PN) *DLOG (RA) - (I+PN) *SINA**2) *WG (I) *SL 
RETURN 
END 

C 
C 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE HMATREL (XL, YL, XM, YM, H, N, NL, NB) 

C 
C 
C This subroutine computes the elements of the H matrix 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XL (N+I) ,YL (N+I) ,XM(N) ,YM(N) ,NL (NB) 
DIMENSION H (2*N, 2*N) 

C 
C Compute the nodal coordinates and store them in the arrays XM 
C and YM 
C 

PI=ACOS (-i. ) 
XL (N+I) =XL (I) 
YL (N+I) =YL (I) 
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DO i0 I-1,N 
XM(I) = (XL (I) +XL (I+l))/2. 

I0 YM(I) = (YL (I) +YL (I+l))/2. 
IF(NB.LE.I) GOTO 40 
XM (NL (i)) = (XL (NL (i)) +XL (i))/2. 
YM (NL (I)) = (YL (NL (i)) +YL (i))/2. 
DO 15 K=2,NB 
XM (NL (K)) = (XL (NL (K)) +XL (NL (K-I) +i) )/2. 

15 YM(NL (K)) - (YL (NL (K)) +YL (NL (K-I) +i) )/2. 
C 
C Compute the elements of matrix H 
C 

40 DO 20 I-I,N 
X0 =XM ( I ) 
Y0=YM(I) 
DO 20 J=I,N 
XI=XL (J) 
YI=YL (J) 
X2=XL (J+l) 
Y2=YL (J+l) 
IF (NB. LE. I) GOTO 60 
IF(J.NE.NL(1))GOTO 50 

X2 =XL ( 1 ) 
Y2 =YL ( 1 ) 
GOTO 60 

50 DO 30 K=2,NB 
IF (J.NE.NL (K)) GOTO 30 

X2=XL (NL (K-l) +i) 
Y2=YL (NL (K- i) +I) 
GOTO 60 

30 CONTINUE 
60 I F ( I. NE. J) THEN 

CALL RLINTH (X0, Y0, X1, Y1, X2, Y2, RESII, RESI2, RES21, RES22 ) 
H (2"I-i, 2*J-l) =RESII 
H (2"I-i, 2*J) =RES21 
H (2"I, 2*J-l) -RESI2 
H (2"I, 2*J) zRES22 
ELSEIF (I. EQ. J) THEN 
H (2"I-I, 2*J-l) ~. 5 
H (2"I-i, 2*J) =0. 
H (2"I, 2*J-l) ~0. 
H (2"I, 2*J) =. 5 
ENDIF 

20 CONTINUE 
RETURN 
END 

C 
C 
C- 
C 

SUBROUTINE RLINTH (X0, Y0, XI, YI, X2 , Y2 , RESII, RESI2 , RES21, RES22) 
C 
C 
C This subroutine computes the off-diagonal elements of the 
C matrix H 
C 
C RA= The distance of the point O to the Gauss integration point 
C on the boundary element 
C 
C WG= The weights of the Gauss integration 
C 
C XI= The coordinates of the Gauss integration points in the 
C interval [-1,1] 
C 
C XC,YC-The global coordinates of the Gauss integration points 
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IMPLICIT REAL*8 (A-H,O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XC(4) ,YC(4) ,XI (4) ,WG(4) 
DATA XI/-0.86113631,-0.33998104,0.33998104,0.86113631/ 
DATA WG/0.34785485,0.65214515,0.65214515,0.34785485/ 
PI=ACOS(-I.) 
AX=(X2-Xl)/2. 
AY-(Y2-YI)/2. 
BX=(X2+XI)/2. 
BY=(Y2+YI)/2. 
SL=DSQRT(AX**2+AY**2) 
ENX=AY/SL 
ENY=-AX/SL 

Compute the line integral 

RESII=0. 
RESI2=0. 
RES21=0. 
RES22-0. 

AI=- (I. +PN) / (4.*PI) 
A2= (i. -PN) / (i. +PN) 
DO 30 I=l, 4 
XC(I) -AX*XI (I) +BX 
YC ( I ) =AY*XI ( I ) +BY 
DX=XC (I) -X0 
DY=YC ( I ) -Y0 
RA=DSQRT (DX* * 2 +DY* * 2 ) 
COSA-DX/RA 
SINAIDY/RA 
RN- COSA* ENX+ S INA* ENY 
RT~ S INA* ENX - COSA* ENY 
RESII-RESII+ (AI/RA) * (A2+2. *COSA**2) *RN*WG (I) *SL 
RES21-RES21+ (AI/RA) * (2. *COSA*SINA*RN+A2*RT) *WG (I) *SL 
RESI2-RESI2+ (AI/RA) * (2. *COSA*SINA*RN-A2*RT) *WG (I) *SL 

30 RES221RES22+ (AI/RA) * (A2+2. *SINA**2) *RN*WG (I) *SL 
RETURN 
END 

C 
C 

C 
SUBROUTINE ABMATREL (G, H, A, R, UB, VB, KCODE, N) 

This subroutine rearranges the matrices G and H and produces the 
matrices A and R 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION G(2*N, 2*N) ,H(2*N, 2*N) ,A(2*N, 2*N) 
DIMENSION UB (N) ,VB (N), KCODE (N), R (2*N) 

Reorder the columns the system of equations and store them in A 

N2=2*N 
DO 20 I=I,N2 
R(I) -0. 
DO 20 J=I,N2 

20 A(I,J) =0. 
DO 70 J=I,N 
GOTO (30,40,50,60) KCODE (J) 

30 DO 35 I=1,N2 
A(I, 2*J-l) =-G (I, 2"J-1) 
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A(I, 2*J) =-G (I, 2*J) 
35 R(I)=R(I)-H(I,2*J-I)*UB(J)-H(I,2*J)*VB(J) 

GOTO 70 
40 DO 45 I-I,N2 

A(I, 2*J-l) -H(I, 2*J-l) 
A(I, 2*J) =H(I, 2*J) 

45 R (I) -R (I) +G (I, 2*J-l) *UB (J) +G (I, 2*J) *VB (J) 
GOTO 70 

50 DO 55 I=I,N2 
A(I, 2"J-1) =-G (I, 2"J-1) 
A(I, 2*J) =H(I, 2*J) 

55 R(I) =R(I) -H(I, 2*J-l) *UB (J) +G(I, 2*J) *VB (J) 
GOTO 70 

60 DO 65 I-1,N2 
A(I, 2*J-l) -H(I, 2*J-l) 
A(I, 2*J) --G (I, 2*J) 

65 R(I) =R(I) +G(I,2*J-I) *UB (J) -H(I, 2*J) *VB (J) 
70 CONTINUE 

RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE SOLVEQ (A, R, N, LSING) 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION A (2*N, 2*N) , R (2*N) 
NN- 2 *N 
CALL LEQS (A, R,NN, LSING) 
IF (LSING . EQ. 0 ) THEN 
WRITE (2,150) 

150 FORMAT (/, ' ' , 76 ( ' * ' )//2X'The system has been solved regularly'/) 
ELSEIF (LSING. EQ. i) THEN 
WRITE ( 2,170 ) 

170 FORMAT(/, ' ' ,76 ( ' *' )//2X'The system is singular'/) 
ENDIF 
RETURN 
END 

C 
C 

C 
SUBROUTINE LEQS (A, B,N, LSING) 

C 
C 
C This subroutine uses Gauss elimination to solve 
C a system of linear equations, [A]{X}={B}, where 
C A : One-dimensional array which contains the occasional row of 
C the two-dimensional array of the coefficients of the unknowns 
C B : One-dimensional array which contains the known coefficients 
C N : Integer denoting the number of the unknowns 
C LSING: Integer taking the values: 
C LSING - 0, if the system has been solved regularly 
C LSING = i, if the system is singular 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION A(1) ,B (i) 

LSING=0 
JJ=-N 
DO I0 J=I,N 

JY=J+I 
JJ=JJ+N+I 
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AMAX=0.0 
IHELP = JJ- J 

DO 20 I=J,N 
IJ=IHELP+I 
IF (ABS (AMAX) -ABS (A (IJ)) ) 30,20,20 

30 AMAX=A (IJ) 
IMAX=I 

20 CONTINUE 
IF (ABS (AMAX) . EQ. 0. ) THEN 

L SING= 1 
RETURN 

END IF 
II-J+N* (J-2) 
IHELP = IMAX - J 
DO 40 K=J,N 

II=II+N 
I2-II+IHELP 
ATEMP =A ( I 1 ) 
A(II) -A (I2) 
A ( 12 ) =ATEMP 

40 A(II) -A(II)/AMAX 
ATEMP=B (IMAX) 
B (IMAX) =B(J) 
B (J) mATEMP/AMAX 

IF(J-N) 50,70,50 
50 IQSmN* (J-l) 

DO I0 IX=JY, N 
IXJ=IQS+IX 
IHELP-J- IX 
DO 60 JX=JY,N 

IJREFmN* (JX-I) +IX 
JJXm IJREF+IHELP 

60 A (IJREF) mA (IJREF) - (A (IXJ) *A (JJX)) 
I0 B (IX) mR (IX) -B(J) *A(IXJ) 
70 NYmN- 1 

NNmN*N 
DO 80 JmI,NY 

IImNN-J 
I2=N-J 
I3-N 

DO 80 Kml,J 
B(I2) =B (I2) -A (Ii) *B (I3) 
IlmIl -N 

80 I3mI3 -i 
RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE REORDEREL ( R , UB , VB , TXB , TYB , KCODE , N) 

C 
C 
C This subroutine rearranges the arrays UB and VB 
C in such a way that all boundary values of u and v 
C are stored in UB and VB, while all boundary 
C values of tx and ty in TXB and TYB 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION UB (N), VB (N), R (2*N), TXB (N), TYB (N), KCODE (N) 

DO 50 I=I,N 
GOTO (i0,20,30,40) KCODE (I) 

I0 TXB (I) =R (2"I-I) 
TYB (I) =R (2"I) 
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GOTO 50 
20 TXB (I) =UB (I) 

TYB (I) =VB (I) 
UB(I) --R (2"I-I) 
VB(I) =R (2"I) 
GOTO 50 

30 TYB (I) =VB (I) 
TXB (I) =R (2"I-I) 
VB(I) =R (2"I) 
GOTO 50 

40 TXB (I) =UB (I) 
UB(I) -R (2"I-I) 
TYB (I) =R (2-I) 

50 CONTINUE 

RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE UVINTER ( XL , YL , XIN, YIN, UB , VB , TXB , TYB , UIN, VIN, N, IN, NL , NB ) 

This subroutine computes the values of the displacements u and v 
at the internal points 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I) ,YL (N+I) ,XIN(IN) ,YIN(IN) ,UB (N) ,VB (N) 
DIMENSION TXB (N), TYB (N), UIN ( IN), VIN (IN) 
DIMENSION NL (NB) 

Compute the values of u and v at the internal points 

IF (NB. GT. I) GOTO 5 
XL (N+I) -XL (I) 
YL (N+I) =YL (I) 

5 DO i0 KK--I,IN 
UIN (KK) =0. 
VIN (KK) -0. 
DO 20 J-I,N 
X0-XIN (KK) 
Y0-YIN (KK) 
XI-XL (J) 
YI=YL (J) 
X2 -XL (J+ 1 ) 
Y2=YL (J+l) 
IF (NB. LE. I) GOTO 60 

IF (J.NE .NL (I)) GOTO 50 
X2 =XL ( 1 ) 
Y2-YL (I) 
GOTO 60 

50 DO 30 K-2,NB 
IF (J .NE .NL (K)) GOTO 30 

X2=XL (NL (K-I) +I) 
Y2-YL (NL (K-I) +I) 
GOTO 60 

30 CONTINUE 
60 CALL RLINTG(X0,Y0,X1,Yl,X2,Y2,GI1,GI2,G22) 

CALL RLINTH (X0, Y0, XI, YI, X2, Y2, HI1, HI2, H21, H22) 
UIN (KK) =UIN (KK) -HII*UB (J) -H21*VB (J) +GII*TXB (J) +GI2*TYB (J) 

20 VIN (KK) =VIN (KK) -HI2*UB (J) -H22*VB (J) +GI2*TXB (J) +G22*TYB (J) 
I0 CONTINUE 
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RETURN 
END 

C 
C 
C============ ............. : 
C 

SUBROUTINE STRESSIN (XL, YL, XIN, YIN, UB , VB , TXB , TYB , 
1 SXIN, SYIN, SXYIN, N, IN, NL , NB) 

This subroutine computes the stresses at the internal points 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XL (N+I), YL (N+I), XIN ( IN), YIN ( IN), UB (N), VB (N) 
DIMENSION TXB (N), TYB (N) 
DIMENSION SXIN ( IN), SYIN ( IN), SXYIN (IN) 
DIMENSION NL (NB) 

C 
IF (NB.GT. i) GOTO 5 
XL (N+I) =XL (i) 
YL (N+I) =YL (I) 

C 
5 DO i0 KK=I,IN 

SXIN (KK) -0. 
SYIN (KK) =0. 
SXYIN (KK) =0. 
DO 20 J=I,N 
X0=XIN (KK) 
Y0-YIN (KK) 
Xl=XL (J) 
YI=YL (J) 
X2-XL (J+ 1) 
Y2-YL (J+l) 
I F (NB. LE. 1 ) GOTO 60 

IF (J.NE.NL (I)) GOTO 50 
X2 =XL ( 1 ) 
Y2 zYL ( 1 ) 
GOTO 60 

50 DO 30 Kz2,NB 
I F ( J. NE. NL (K)) GOTO 30 

X2=XL (NL (K-I) +I) 
Y2=YL (NL (K-I) +I) 
GOTO 60 

30 CONTINUE 
60 CALL SLINTH(X0,Y0,XI,YI,X2,Y2,RESII,RES21,RES31,RESI2,RES22, 

1 RES32 , RESBII, RESB2 I, RESB31, RESBI2 , RESB22 , RESB32) 

C 
SXIN (KK) =SXIN (KK) +RESll*TXB (J) +RES12*TYB (J) 

1 -RESBII*UB (J) -RESBI2*VB (J) 
SYIN (KK) =SYIN (KK) +RES2 I*TXB (J) +RES22 *TYB (J) 

1 -RESB21*UB (J) -RESB22*VB (J) 
20 SXYIN (KK) =SXYIN (KK) +RES31*TXB (J) +RES32*TYB (J) 

1 -RESB31*UB (J) -RESB32*VB (J) 

i0 CONTINUE 
RETURN 
END 

C 
C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE SLINTH (X0,Y0,XI,YI,X2,Y2,RESII,RES21,RES31,RESI2, 

1 RES22 , RES32 , RESBII, RESB21, RESB31, RESBI2 , RESB22 , RESB32 ) 

C 
C 
C This subroutine computes the line integrals of the kernels in the 
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C integral representations of the stresses 

C 
C RA= The distance of the point 0 to the Gauss integration point 
C on the boundary element 

C 
C WG= The weights of the Gauss integration 

C 
C XI= The coordinates of the Gauss integration points in the 
C interval [-I,I] 
C 
C XC,YC=The global coordinates of the Gauss integration points 

C 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XC (4), YC (4), XI (4), WG (4) 
DATA XI/-0. 86113631, -0. 33998104,0. 33998104,0. 86113631/ 
DATA WG/0. 34785485,0. 65214515,0. 65214515,0. 34785485/ 
PI=ACOS (-I. ) 
AX= (X2-Xl)/2. 
AY- (Y2-YI)/2. 
BX= (X2+XI)/2. 
BY= (Y2+YI)/2. 
SL=DSQRT (AX* * 2 +AY* * 2 ) 
ENX=AY/SL 
ENY=-AX/SL 

c 
c Compute the line integral 
C 

RESII=0. 
RES21=0. 
RES31=0. 
RESI2=0. 
RES22=0. 
RES32=0. 
RESBII=0. 
RESB21=0. 
RESB3 i=0. 
RESBI2=0. 
RESB22=0. 
RESB32=0. 

C 
AI=- (i. +PN) / (4. *PI) 
A2 - ( i. - PN) / ( i. +PN) 
A3=-2. *GL*AI 
DO 30 I=i,4 
XC(I) =AX*XI (I) +BX 
YC ( I ) =AY*XI ( I ) +BY 
DX=XC ( I ) - X0 
DY-YC ( I ) - Y0 
RA=DSQRT (DX* * 2 +DY* * 2 ) 
COSA= -DX/RA 
SINA= -DY/RA 
RN= COSA* ENX+ S INA* ENY 

C 
RESII-RESII+ (AI/RA) * (A2 *COSA+2. *COSA* * 3 ) *WG ( I ) *SL 
RES21-RES21+ (AI/RA) * (-A2*COSA+2. *COSA*SINA**2) *WG (I) *SL 
RES3 I=RES3 I+ (AI/RA) * (A2 *SINA+2. *COSA* * 2 * SINA) *WG ( I ) *SL 
RESI2--RESI2+ (AI/RA) * (-A2*SINA+2. *COSA**2*SINA) *WG (I) *SL 
RES22=RES22+ (AI/RA) * (A2*SINA+2. *SINA**3) *WG (I) *SL 
RES32=RES32+ (AI/RA) * (A2*COSA+2. *COSA*SINA**2) *WG (I) *SL 

C 
RESBII=RESBII+ (A3/RA**2) * (2. *COSA*RN* (i. -4. *COSA**2) + 

1 (2. *COSA**2+I. ) *ENX) *WG (I) *SL 
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RESB2 I-RESB2 i+ (A3/RA**2 ) * ( - 8. *SINA** 2*COSA*RN+2. *COSA*SINA*ENY+ 
1 ENX) *WG (I) *SL 

RESBI2 =RESBI2 + (A3/RA* *2 ) * ( - 8. *COSA* *2 *SINA*RN+2. *COSA* SINA*ENX+ 
1 ENY) *WG (I) *SL 

RESB22=RESB22+ (A3/RA**2) * (2. *SINA*RN* (I. -4. *SINA**2) + 
1 (2. *SINA**2+I. ) *ENY) *WG (I) *SL 

30 CONTINUE 
RESB3 I=RESBI2 
RESB32=RESB21 
RETURN 
END 

C 
C 
:::::::::::::::::::::::::::: 

C 
SUBROUTINE STRESSB(XL,YL,UB,VB,TXB,TYB,SXB,SYB,SXYB,N, NL,NB) 

This subroutine computes the stress at the boundary 
nodal points 

IMPLICIT REAL*8 (A-H, O-Z) 
COMMON EL, GL, PN, ALAMDA 
DIMENSION XL (N+I) , YL (N+I), UB (N) , VB (N) , TXB (N), TYB (N) 
DIMENSION SXB (N), SYB (N), SXYB (N), SL (N), ENX (N), ENY (N), A ( 4,4 ), B (4) 
DIMENSION NL (NB) 

IF (NB. GT. I) GOTO 5 
XL (N+I) =XL (i) 
YL (N+I) -YL (I) 

Computation of the element half lengths and direction 
cosines of the normal vector 

5 DO i0 K*I,NB 
I F (K. EQ. i) THEN 
NF=I 
ELSE 
NF=NL (K-l) +I 
ENDIF 
DO l0 I=NF, NL (K) 
I F ( I. EQ. NL (K) ) THEN 
AX- (XL (NF) -XL (NL (K)) )/2. 
AY- (YL (NF) -YL (NL (K)) )/2. 
SL ( I ) -DSQRT (AX* * 2 +AY* * 2 ) 
ENX (I) =AY/SL (I) 
ENY (I) --AX/SL (I) 
ELSE 
AX-(XL (I+l)-XL (I))/2. 
AY- (YL (I+l) -YL (1))/2. 
SL (I) =DSQRT (AX**2+AY**2) 
ENX (1) =AY/SL (I) 
ENY (I) --AX/SL (I) 
ENDIF 

I0 CONTINUE 

Computation of the tangential derivatives UT and VT 

DO 20 K=I,NB 
I F (K. EQ. 1 ) THEN 
NF-I 
ELSE 
NF=NL (K-I) +I 
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ENDIF 
DO 20 I=NF,NL (K) 
IF (I. EQ. NF) THEN 
SI=SL (NL (K)) +SL (NF) 
S2=SL (NF) +SL (NF+I) 
UI=UB (NL (K)) 
U2=UB (NF) 
U3=UB (NF+l) 
VI=VB (NL (K)) 
V2=VB (NF) 
V3=VB (NF+I) 
ELSE IF (I. EQ. NL (K)) THEN 
SI=SL (NL (K) -I) +SL (NL (K)) 
S2=SL (NL (K)) +SL (NF) 
UI=UB (NL (K) -I) 
U2=UB (NL (K)) 
U3=UB (NF) 
VI=VB (NL (K) -i) 
V2=VB (NL (K)) 
V3=VB (NF) 
ELSE 
SI=SL (I-1) +SL (I) 
S2=SL (I) +SL (I+l) 
UI=UB (I-i) 
U2=UB (I) 
U3=UB (I+l) 
VI=VB (I-I) 
V2=VB (1) 
V3=VB (I+l) 
ENDIF 

Computation of the boundary stresses 

20 

UT- (SI**2*U3-S2**2*UI+ ($2"'2-SI*'2) *U2) 
1 / (SI*$2" (SI+S2)) 
VT- (SI**2*V3-S2**2*VI+ ($2"'2-SI*'2) *V2) 

1 / (Si*S2" (Si+S2)) 
A ( I, I) = (ALAMDA+2. *GL) *ENX ( I ) 
A ( I, 2) =GL*ENY (I) 
A (l, 3 ) -GL*ENY (I) 
A ( I, 4 ) =ALAMDA* ENX ( I ) 
A (2, I) -ALAMDA*ENY (I) 
A (2,2) =GL*ENX (I) 
A (2,3) =GL*ENX (I) 
A (2,4) = (ALAMDA+2. *GL) *ENY (I) 
A(3,1) =-ENY (I) 
A (3,2) =ENX (I) 
A(3,3)-0. 
A(3,4) =0. 
A(4, I)=0. 
A(4,2) =0. 
A(4,3) =-ENY (I) 
A (4,4) --ENX (I) 
B (i) =TXB (I) 
B (2) =TYB (I) 
B(3) =UT 
B (4) -VT 
CALL LEQS (A, B, 4, LSING) 
SXB (I) =ALAMDA* (B (i) +B (4)) +2. *GL*B (I) 
SYB (I) =ALAMDA* (B (i) +B (4)) +2. *GL*B (4) 
SXYB (I) =GL* (B (2) +B (3)) 
CONTINUE 
RETURN 
END 
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C 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
SUBROUTINE OUTPUTEL (XM, YM, UB, VB, TXB, TYB, XIN, YIN, UIN, VIN, 

1 SXB, SYB, SXYB, SXIN, SYIN, SXYIN, N, IN) 
C 
C 
C This subroutine prints the results in the outputfile. 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION XM (N) , YM (N), UB (N), VB (N), TXB (N), TYB (N) 
DIMENSION XIN (N), YIN (N), UIN ( IN), VIN (IN) 
DIMENSION SXB (N), SYB (N), SXYB (N) 
DIMENSION SXIN ( IN), SYIN ( IN), SXYIN (IN) 

WRITE (2, i00) 
i00 FORMAT ( ' ', 76 ( ' *' )///' RESULTS'///2X, ' BOUNDARY NODES'//' NODE' 

1 5X, 'X',IIX, 'Y',I2X, U',IIX 'V',IOX, 'TXB',9X, 'TYB'/) 
DO I0 I=I,N 

i0 WRITE(2,200) I,XM(I) ,YM(I) ,UB(I) ,VB (I) ,TXB (I) ,TYB (I) 
200 FORMAT(I3,2 (IX,Eli.5) ,IX,4 (IX,Eli.5)) 

WRITE (2,300) 
300 FORMAT(//,2X, 'DISPLACEMENTS AT INTERNAL POINTS'//' POINT',9X, 

1 'X' , 14X, 'Y' , 15X, 'U' , 15X, 'V'/) 
DO 20 K=I,IN 

20 WRITE (2,400) K,XIN(K) ,YIN(K), UIN(K) ,VIN(K) 
400 FORMAT(I5,4 (2X,EI4.5)) 

WRITE (2,600) 
600 FORMAT (//, 2X, ' STRESSES AT THE BOUNDARY NODAL POINTS'/) 

WRITE (2,700) 
700 FORMAT ('NODE', 7X,' X', 14X, 'Y', 1IX, ' SXB', 12X, ' SYB', 10X, ' SXYB'/) 

DO 30 I-I,N 
30 WRITE (2,800)I,XM(I) ,YM(I), SXB (I), SYB(I), SXYB (I) 

800 FORMAT(I3,5(2X,EI2.5) ) 
WRITE (2,900) 

900 FORMAT(//,2X, 'STRESSES AT THE INTERNAL POINTS'/) 
WRITE (2, i000) 

1000 FORMAT ( ' NODE', 7 X, ' X', 14X, ' Y', 1 IX, ' SXIN', 10X, ' SYIN', 10X, ' SXYIN' / ) 
DO 40 I-l, IN 

40 WRITE ( 2,800 ) I, XIN ( I ), YIN ( I ), SXIN ( I ), SYIN ( I ), SXYIN ( I ) 
WRITE (2,500) 

500 FORMAT(/,' ',76('*')) 
RETURN 
END 

C 
C 

Example  7.2 

The scope of  this example is to illustrate the use o f  program ELBECON by solving 
a simple plane stress problem. The body under consideration is a deep beam (i.e. 
the length of  the beam is not large in comparison with its depth) clamped at its two 
ends. It has a thickness is h -- 0 . 1 m  and material constants E = 2 x 10 '~ k N / m  2 , 
u = 0 .20 .  All the other data are shown in Fig. 7.9. 
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Figure 7.9 Deep beam clamped at both ends. 

The results are obtained using a total of N=44 boundary elements. The horizontal 
boundaries (upper and lower) are divided each into NX=15 boundary elements, 
whereas the vertical ones (left and right) into NY=7 elements each. The data file 
for elasticity problems of rectangular domains can be constructed automatically by 
program RECT-4.FOR which has been written for this purpose. This program is 
listed below for the values N=44, NX = 15, NY=7, IN=3, NB = 1, IPLANE = 1, IX = 1, 
JY=3 of Example 7.2. 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

C 
PROGRAM RECT4 

C 
C This program creates the INPUTFILE for ELBECON when the 

C domain is a rectangle AA*BB 

C 
IMPLICIT REAL*8 (A-H,O-Z) 

CHARACTER*I5 INPUTFILE 

CHARACTER*80 NAME,TITLE 

PARAMETER (N=44) 
PARAMETER (IN=3) 
PARAMETER (NB=I) 
DIMENSION XL (N+.I), YL (N+I), XIN (IN), YIN (IN) 
DIMENSION KCODE (N) ,UB (N) ,VB (N) ,NL (NB) 

WRITE (*, ' (A) ') ' Name of the INPUTFILE (max.15 characters) ' 
READ (*, ' (A) ' ) INPUTFILE 

OPEN (I, FILE=INPUTFILE) 
WRITE (*, ' (A) ') ' User NAME (max.15 characters) ' 

READ(*,' (A) ' )NAME 

WRITE (I,' (A) ' )NAME 
WRITE (*, ' (A) ') ' Program TITLE (max.15 characters) ' 

READ (*, ' (A) ' ) TITLE 
WRITE (i,' (A) ' )TITLE 
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WRITE (I, I00) 
100 FORMAT ( ' ' , 79 (' ' ) ) 

IPLANE=I 
WRITE (i, 150) IPLANE 

150 FORMAT ( 14 ) 
EL=200000. 
PN=. 2 
WRITE (I, 200) EL, PN 

200 FORMAT (FI0.0, F6 . 3) 
WRITE (I, i00) 

NL(1) =N 
WRITE(I, 250) (NL (I), I=I,NB) 

250 FORMAT (I4) 
C 
C Boundary coordinates 
C 

AA=3. 
BB=I. 
NX=15 
NY=7 
DA=AA/NX 
DB=BB/NY 
DO 1 I=I,NX 
XL (I) -- (I-l) *DA 
YL (I) =0. 

1 WRITE(l, 300)XL(I) ,YL(I) 
300 FORMAT (2 (FI4.8,2X)) 

DO 2 I=I,NY 
XL ( I +NX ) =AA 
YL (I+NX) = (I-l) *DB 

2 WRITE(I,300)XL(I+NX) ,YL(I+NX) 

DO 3 I-I,NX 
XL (I+NX+NY) =AA- (I-l) *DA 
YL (I+NX+NY) =BB 

3 WRITE(l, 300)XL(I+NX+NY) ,YL(I+NX+NY) 

DO 4 I=I,NY 
XL (I+NX+NY+NX) -0. 
YL (I+NX+NY+NX) =BB- (I-l) *DB 

4 WRITE (i, 300) XL (I+NX+NY+NX) ,YL (I+NX+NY+NX) 
WRITE (i, i00) 

C 
C Boundary conditions 
C 

XL (N+I) =XL (i) 
YL (N+I) =YL (I) 
DO 10 I=I,NX 
KCODE ( I ) = 2 
XM= (XL (I) +XL (I+l)) /2. 
YM- (YL (I) +YL (I+l))/2. 
UB(1) =0. 

I0 VB(I)z0. 
DO 20 I=I,NY 
IImI+NX 
KCODE (II) =i 
XM= (XL (II) +XL (II+l))/2. 
YM. (YL (II) +YL (II+l))/2. 
UB (II) =0. 

20 VB (II) -0. 
DO 30 I=I,NX 
II=I+NX+NY 
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KCODE ( I I ) = 2 
XM= (XL  (ZZ)  +XL ( ' r T + Z ) )  / 2 .  
YM= (YL ( I I )  +YL ( I I + l ) ) / 2 .  
U'S ('r "r) = 0 .  

30 VB (II) =-I. 
DO 40 I=I,NY 
I I = I +NX +NY+NX 
KCODE ( I I ) = 1 
XM= (XL ( I I )  +XL ( I I + l ) ) / 2 .  
YM= (YL (II) +YL (II+l))/2. 
UB (TT)  = 0 .  

40 ~ (II) =0. 
DO 50 I-I,N 

50 WRITE (I, 400) KCODE (I) ,UB(I) ,VB(I) 
400 FORMAT (I4,3X, 2 (FI8.8)) 

WRITE (I, I00) 

Coordinates of the internal points 

IX=I 
JY=3 
DX=AA/IX 
DY=BB/(JY+I) 
WRITE(I, I00) 

DO 5 J=I,JY 
DO 5 I=I,IX 
K= (J-l) *JY+I 
XIN (K) =DX/2. + (I-1) *DX 
YIN (K) --DY+ (J-l) *DY 
WRITE ( I, 300 ) XIN (K), YIN (K) 
CONTINUE 

WRITE (i, I00) 

STOP 
END 

C 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

J.T.KATSIKADELIS 
EXAMPLE 7.2 

1 
200000. .200 

44 
.00000000 
.20000000 
.40000000 
.60000000 
.80000000 

1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 
2.20000000 

EXAMPLE 7.2 (DATA) 

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  



Chapter 7 The BEM for Two-Dimensional Elastostatic Problems 267 

2.40000000 
2.60000000 
2.80000000 
3.00000000 
3.00000000 
3.00000000 
3.00000000 
3.00000000 
3.00000000 
3.00000000 
3.00000000 
2.80000000 
2.60000000 
2.40000000 
2.20000000 
2.00000000 
1.80000000 
1.60000000 
1.40000000 
1.20000000 
1.00000000 
.80000000 
.60000000 
.40000000 
.20000000 
.00000000 
.00000000 
.00000000 
.00000000 
.00000000 
.00000000 
.00000000 

.00000000 

.00000000 

.00000000 

.00000000 

.14285714 

.28571429 

.42857143 

.57142857 

.71428571 

.85714286 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
1.00000000 
.85714286 
.71428571 
.57142857 
.42857143 
.28571429 
.14285714 

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0  

.0000000 

.0000000 

.0000000 

.0000000 

.0000000 

.0000000 

.0000000 

.0000000 

.0000000 

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0  
- i .00000000 
-I.00000000 
-1.00000000 
-I.00000000 
-i.00000000 
-I.00000000 
-1.00000000 
-I.00000000 
-i.00000000 
-I.00000000 
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2 .00000000 

2 .00000000 

2 .00000000 
2 .00000000 

2 . 0 0 0 0 0 0 0 0  
1 .00000000 
1 .00000000 

1 .00000000 
1 .00000000 

1 .00000000 
1 .00000000 
1 .00000000 

1.50000000 .25000000 

1.50000000 .50000000 

1.50000000 .75000000 

-I.00000000 

-I.00000000 

-i.00000000 
-I.00000000 

-I.00000000 

.00000000 

.00000000 

.00000000 

.00000000 

.00000000 

.00000000 

.00000000 

EXAMPLE 7.2 (RESULTS) 

**************************************************************************** 

J.T.KATSIKADELIS 

EXAMPLE 7.2 

DATA 

~ E R  OF BOUNDARY ELEMENTS = 44 

NUMBER OF INTERNAL POINTS = 3 

NUMBER OF BOUNDARIES = 1 

PLANE STRESS PROBLEM 

ELASTIC CONSTANTS: ELASTIC MODULUS = .2000E+06 POISSON RATIO = .20 

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS 

NODE XL YL 

1 .00000E+00 .00000E+00 

2 .20000E+00 .00000E+00 

3 .40000E§ .00000E§ 
4 .60000E§ .00000E§ 

5 .80000E§ .00000E§ 
6 .10000E§ .00000E§ 

7 .12000E+01 .00000E§ 
8 .14000E+01 .00000E§ 

9 .16000E+01 .00000E§ 
I0 .18000E§ .00000E+00 
iI .20000E+01 .00000E+00 

12 .22000E+01 .00000E+00 
13 .24000E+01 .00000E+00 
14 .26000E+01 .00000E+00 

15 .28000E+01 .00000E+00 

16 .30000E+01 .00000E+00 
17 .30000E+01 .14286E+00 

18 .30000E+01 .28571E§ 

19 .30000E+01 .42857E+00 

20 .30000E+01 .57143E+00 
21 .30000E+01 .71429E+00 
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22 .30000E+01 .85714E+00 
23 .30000E+01 .10000E+01 
24 .28000E+01 .10000E+01 
25 .26000E+01 .10000E+01 
26 .24000E+01 .10000E+01 
27 .22000E+01 .10000E+01 
28 .20000E+01 .10000E+01 
29 .18000E+01 .10000E+01 
30 .16000E+01 .10000E+01 
31 .14000E+01 .10000E+01 
32 .12000E+01 .10000E+01 
33 .10000E+01 .10000E+01 
34 .80000E+00 .10000E+01 
35 .60000E+00 .10000E+01 
36 .40000E+00 .10000E+01 
37 .20000E+00 .10000E+01 
38 .00000E+00 .10000E+01 
39 .00000E+00 .85714E+00 
40 .00000E+00 .71429E+00 
41 .00000E+00 .57143E+00 
42 .00000E+00 .42857E+00 
43 .00000E+00 .28571E+00 
44 .00000E+00 .14286E+00 

BOUNDARY CONDITIONS 

NODE KCODE 

1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 2 
8 2 
9 2 

i0 2 
Ii 2 
12 2 
13 2 
14 2 
15 2 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 2 
24 2 
25 2 
26 2 
27 2 
28 2 
29 2 
30 2 
31 2 
32 2 
33 2 
34 2 
35 2 
36 2 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E§ 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E§ 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E§ 

.00000E§ 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E§ 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

.00000E+0 

PRESCRIBED VALUES 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E+00 

.00000E+00 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E§ 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E§ 

.00000E§ 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
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37 2 .00000E+00 -.10000E+01 

38 1 .00000E+00 .00000E+00 

39 1 .00000E+00 .00000E+00 

40 1 .00000E+00 .00000E+00 

41 1 .00000E+00 .00000E+00 

42 1 .00000E+00 .00000E+00 

43 1 .00000E+00 .00000E+00 

44 1 .00000E+00 .00000E+00 

The system has been solved regularly 

RESULTS 

BOUNDARY NODES 

NODE X Y U V TXB TYB 

1 .10000E+00 .00000E+00 -.II073E-05 -.47147E-06 . 

2 .30000E+00 .00000E+00 -.24208E-05 -.22679E-05 . 

3 .50000E+00 .00000E+00 -.30557E-05 -.44605E-05 . 

4 .70000E+00 .00000E+00 -.31222E-05 -.66588E-05 . 

5 .90000E+00 .00000E+00 -.27353E-05 -.86054E-05 . 

6 .II000E+01 .00000E+00 -.20100E-05 -.I0118E-04 . 

7 .13000E+01 .00000E+00 -.I0607E-05 -.11073E-04 . 

8 .15000E+01 .00000E+00 -.74751E-21 -.11399E-04 . 

9 .17000E+01 .00000E+00 .I0607E-05 -.II073E-04 . 

I0 .19000E+01 .00000E+00 .20100E-05 -.I0118E-04 . 

ii .21000E+01 .00000E+00 .27353E-05 -.86054E-05 . 

12 .23000E+01 .00000E§ .31222E-05 -.66588E-05 . 

13 .25000E+01 .00000E+00 .30557E-05 -.44605E-05 . 

14 .27000E+01 .00000E+00 .24208E-05 -.22679E-05 . 

15 .29000E+01 .00000E+00 .II073E-05 -.47147E-06 . 

16 .30000E+01 .71429E-01 .00000E+00 .00000E+00 -. 

17 .30000E+01 .21429E+00 .00000E+00 .00000E+00 -. 

18 .30000E+01 .35714E+00 .00000E+00 .00000E+00 -. 

19 .30000E+01 .50000E+00 .00000E+00 .00000E+00 -. 

20 .30000E+01 .64286E+00 .00000E+00 .00000E+00 . 

21 .30000E+01 .78571E+00 .00000E+00 .00000E+00 . 

22 .30000E+01 .92857E+00 .00000E+00 .00000E+00 . 

23 .29000E+01 .10000E+01 -.15265E-05 -.16042E-05 . 

24 .27000E+01 .10000E+01 -.27364E-05 -.42788E-05 . 

25 .25000E+01 .10000E+01 -.31999E-05 -.67858E-05 . 

26 .23000E+01 .10000E+01 -.31621E-05 -.90767E-05 . 

27 .21000E+01 .10000E+01 -.27298E-05 -.II037E-04 . 

28 .19000E+01 .10000E+01 -.19935E-05 -.12543E-04 . 

29 .17000E+01 .10000E+01 -.I0495E-05 -.13491E-04 . 

30 .15000E+01 .10000E+01 .47646E-21 -.13814E-04 . 

31 .13000E+01 .10000E+01 .I0495E-05 -.13491E-04 . 

32 .II000E+01 .10000E+01 .19935E-05 -.12543E-04 . 

33 .90000E§ .10000E+01 .27298E-05 -.II037E-04 . 

34 .70000E+00 .10000E+01 .31621E-05 -.90767E-05 . 

35 .50000E+00 .10000E+01 .31999E-05 -.67858E-05 . 

36 .30000E+00 .10000E+01 .27364E-05 -.42788E-05 . 

37 .10000E+00 .10000E+01 .15265E-05 -.16042E-05 . 

38 .00000E+00 .92857E§ .00000E§ .00000E+00 -. 

39 .00000E+00 .78571E+00 .00000E+00 .00000E+00 -. 

40 .00000E+00 .64286E+00 .00000E§ .00000E+00 -. 

41 .00000E+00 .50000E+00 .00000E+00 .00000E+00 . 

42 .00000E+00 .35714E+00 .00000E+00 .00000E+00 . 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E§ .00000E§ 

00000E§ .00000E§ 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E§ .00000E+00 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E§ .00000E§ 

00000E+00 .00000E+00 

00000E+00 .00000E+00 

00000E+00 .00000E§ 

20636E+01 -.54870E+00 

91311E+00 .30483E-01 

51615E+00 .19079E+00 

19883E+00 .29576E+00 

13260E+00 .34608E+00 

57485E+00 .34953E+00 

22960E+01 .39736E+00 

00000E+00 -.10000E§ 

00000E+00 -.10000E§ 

00000E§ -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E§ -.10000E§ 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

00000E+00 -.10000E+01 

22960E+01 .39736E+00 

57485E+00 .34953E+00 

13260E+00 .34608E+00 

19883E+00 .29576E+00 

51615E+00 .19079E+00 
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43 .00000E+00 .21429E+00 .00000E+00 .00000E+00 .91311E+00 .30483E-01 
44 .00000E+00 .71429E-01 .00000E+00 .00000E+00 .20636E+01 -.54870E+00 

DISPLACEMENTS AT INTERNAL POINTS 

POINT X Y U V 

1 .15000E+01 .25000E+00 
2 .15000E+01 .50000E+00 
3 .15000E+01 .75000E+00 

.27049E-21 

.30440E-21 

.48638E-21 

-.I1965E-04 
-.12522E-04 
-.13175E-04 

STRESSES AT THE BOUNDARY NODAL POINTS 

NODE X Y SXB SYB 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

.10000E+00 .00000E+00 

.30000E+00 .00000E+00 

.50000E+00 .00000E+00 

.70000E§ .00000E+00 

.90000E+00 .00000E+00 

.I1000E+01 .00000E+00 

.13000E+01 .00000E+00 

.15000E+01 .00000E+00 

.17000E+01 .00000E+00 

.19000E+01 .00000E+00 

.21000E+01 .00000E+00 

.23000E+01 .00000E+00 

.25000E+01 .00000E+00 

.27000E+01 .00000E§ 

.29000E+01 .00000E+00 

.30000E+01 .71429E-01 

.30000E+01 .21429E+00 

.30000E+01 .35714E+00 

.30000E+01 .50000E§ 

.30000E+01 .64286E+00 

.30000E+01 .78571E+00 

.30000E+01 .92857E+00 

.29000E+01 .10000E+01 

.27000E+01 .10000E+01 

.25000E+01 .10000E+01 

.23000E§ .10000E+01 

.21000E+01 .10000E+01 

.19000E+01 .10000E§ 

.17000E+01 .10000E+01 

.15000E+01 .10000E+01 

.13000E+01 .10000E+01 

.II000E+01 .10000E+01 

.90000E+00 .10000E+01 

.70000E+00 .10000E+01 

.50000E+00 .10000E§ 

.30000E+00 .10000E+01 

.10000E+00 .10000E+01 

.00000E+00 .92857E+00 

.00000E+00 .78571E+00 

.00000E+00 .64286E+00 

.00000E+00 .50000E+00 

.00000E+00 .35714E+00 

.00000E+00 .21429E+00 

.00000E+00 .71429E-01 

-.13018E+01 
-.97418E+00 
-.35074E+00 
.16019E+00 
.55613E+00 
.83728E+00 
.10050E+01 
.I0607E+01 
.10050E+01 
.83728E+00 
.55613E+00 
.16019E+00 

-.35074E+00 
-.97418E+00 
-.13018E+01 
-.20636E+01 
-.91311E+00 
-.51615E§ 
-.19883E+00 
.13260E+00 
.57485E+00 
.22960E+01 
.13174E+01 
.63672E+00 
.12837E-01 

-.43507E+00 
-.78429E+00 
-.10401E+01 
-.I1968E+01 
-.12495E+01 
-.I1968E+01 
-.10401E+01 
-.78429E+00 
-.43507E+00 
.12837E-01 
.63672E+00 
.13174E§ 
.22960E+01 
.57485E+00 
.13260E+00 

-.19883E+00 
-.51615E+00 
-.91311E+00 
-.20636E+01 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E§ 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E§ 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 
-.16270E+00 
-.18262E+00 
-.I0323E+00 
-.39766E-01 
.26520E-01 
.I1497E+00 

-.39150E+00 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E§ 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.10000E+01 
-.39150E§ 
.I1497E+00 
.26520E-01 

-.39766E-01 
-.I0323E+00 
-.18262E+00 
-.16270E+00 

SXYB 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E§ 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.00000E+00 

.54870E+00 

.30483E-01 

.19079E+00 

.29576E+00 

.34608E+00 

.34953E+00 

.39736E+00 

.00000E+00 

.00000E+00 
00000E+00 
00000E+00 
00000E+00 
00000E+00 
00000E§ 
00000E+00 
00000E+00 
00000E§ 
00000E+00 
00000E+00 
00000E+00 
00000E+00 
00000E§ 
39736E+00 
34953E+00 
34608E§ 
29576E+00 
19079E+00 
30483E-01 
54870E+00 

STRESSES AT THE INTERNAL POINTS 
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NODE X Y SXIN SYIN SXYIN 

1 .15000E+01 .25000E+00 .39351E+00 -.33746E+00 -.26455E-16 
2 .15000E+01 .50000E+00 -.92069E-01 -.50317E+00 -.22378E-15 
3 .15000E+01 .75000E+00 -.58061E+00 -.66592E+00 -.54123Eo15 

Table 7.1 presents the computed values of the displacement v and the stress c~x at 
the cross-section z = 1.5 for various values N .  They are compared with those 
obtained using FEM and the Timoshenko beam theory (i.e. including shear defor- 
mation). The deflection at point 2 is given by the expression 

V 2 = 
qoz 4 

384EI a 

where n is the shape coefficient of the cross-section ( n -  1.2 for a rectangular 
cross-section) and q is the load per unit length (q - - h  ty ). 

Table 7.1 Computed values at boundary and internal points of Example 7.2 
for various values of N .  

BEM 

Point FEM ] 

44 

Displacement v x 104 

A -0.1381 -0.2633 -0.2766 -0.2815 -0.2864 -0.2911 -0.2924 

2 -0.1252 -0.2495 -0.2627 -0.2675 -0.2724 -0.2771 -0.2783 

/3 -0.1140 -0.2392 -0.2525 -0.2574 -0.2623 -0.2670 -0.2682 

Stress c7~ 

A -1.250 -2.491 -2.614 -2.660 -2.706 -2.750 -2.630 

3 -0.581 -1.055 -1.106 -1.124 -1.143 -1.161 -1.170 

2 -0.092 -0.090 -0.090 -0.090 -0.090 -0.090 -0.089 

1 0.394 0.872 0.923 0 . 9 6 1  0 . 9 6 1  0.979 0.986 

B 1.061 2.259 2.383 2.475 2.475 2.519 2.450 

B e a m  

Theory 

-0.2885 

-2.250 

-1.125 

0.000 

1.125 

2.250 

For the beam theory, the stress cr~ is computed from the expression 

M 
- - -  ( o . 5 -  y) 

I 

where M - q a 2 / 2 4  is the bending moment at the mid-section. 
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We note that a number  of  44 constant boundary elements is not sufficient for an 
accurate solution. The convergence of  the BEM was achieved with N=1604 
(NX-501 ,  NY=301) ,  whereas of  the FEM with 432 rectangular hybrid elements. 
Finally, the distribution of  crx at the cross-section z - 3.0 is shown in Fig. 7.10 as 
it was obtained using BEM, FEM and the Timoshenko beam theory. 

. 0  ..... 

0.8 

0.6 

0.4 

0.2 

0.0 

I , i , ^1 , . l ,z _ 

- ~ . ~  .... L - Q -  Beam Theory J - 

- i ~  ~ t ! ! t 

0.0 -5.0 0.0 5.0 10.0 15.0 

F igure  7.10 Distribution of  cy:~ at the cross-section x : 3.0.  

E x a m p l e  7 . 3  

Determine the deformation and state of  stress for the pipe of  Fig. 7.11, which is 
subjected to internal pressure p - 1 M P ~ .  It has a uniform cross-section and since 
it is very long in the z-di rec t ion,  the produced state of  stress is plane strain. The 
material constants are E - 2 • 10 ~ k N / m  2 and lJ = 0.20.  All the other data can 
be found in Fig. (7.11). 

The results are obtained using program ELBECON with INPLANE=0,  N=348, 
NB=2, NL(1)=284 and NL(2)=348. The external boundary is divided into N=142 
(NX=91, N Y - 5 1 )  constant boundary elements, while the inner boundary is discre- 
tized into N=32 (NX-21 ,  NY=I 1) elements. The data file is created using program 
RECTEL-MU.FOR.  Due to space considerations, the obtained results are given 
only at selected points. The distribution of  tu along the boundary y = 0 is shown 
in Fig. 7.12, whereas the distribution of  o~: along the boundaries y = 0 and 
y = 1.5 are shown in Fig. 7.13. Fig. 7.14 depicts the deformed shape of  the pipe 's  
cross-section. Finally, the stress contours o~:, ou and "rxy at the cross-section of  
the pipe are presented in Figs. 7.15, 7.16 and 7.17, respectively. 
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Figure 7.11 Pipe under uniform pressure. 

EXAMPLE 7.3 (RESULTS) 

**************************************************************************** 

J.T. KATSIKADELIS 

EXAMPLE 7.3 

DATA 

NUMBER OF BOUNDARY ELEMENTS =348 

NUMBER OF INTERNAL POINTS = 28 

NUMBER OF BOUNDARIES = 2 

PLANE STRAIN PROBLEM 

ELASTIC CONSTANTS: ELASTIC MODULUS = .2000E+06 POISSON RATIO = .20 

RESULTS 

BOUNDARY NODES 

NODE X Y U V TXB TYB 

1 .13736E-01 .00000E+00 -.24189E-04 .00000E+00 .00000E+00 -.52996E+03 

21 .56319E+00 .00000E+00 -.72425E-03 .00000E+00 .00000E+00 -.35881E+03 

41 .II126E+01 .00000E+00 -.35833E-03 .00000E+00 .00000E+00 .84725E+03 
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46 
51 
71 
91 
92 

112 
117 
122 
142 
143 
163 
183 
188 
193 
213 
233 
234 
254 
259 
264 
284 
285 
290 
295 
296 
304 
306 
308 
316 
317 
322 
327 
328 
336 
338 
340 
348 

.12500E+01 .00000E+00 

.13874E+01 .00000E+00 

.19368E+01 .00000E+00 

.24863E+01 .00000E+00 

.25000E+01 .14706E-01 

.25000E+01 .60294E+00 

.25000E+01 .75000E+00 

.25000E+01 .89706E+00 

.25000E+01 .14853E+01 

.24863E+01 .15000E+01 

.19368E+01 .15000E+01 

.13874E+01 .15000E+01 

.12500E+01 .15000E+01 

.II126E+01 .15000E+01 

.56319E+00 .15000E+01 

.13736E-01 .15000E+01 

.00000E+00 .14853E+01 

.00000E+00 .89706E+00 

.00000E+00 .75000E+00 

.00000E+00 .60294E+00 

.00000E+00 .14706E-01 

.75000E+00 .52273E+00 

.75000E+00 .75000E+00 

.75000E+00 .97727E+00 

.77381E+00 .10000E+01 

.I1548E+01 .10000E+01 

.12500E+01 .10000E+01 

.13452E+01 .10000E+01 

.17262E+01 .10000E+01 

.17500E+01 .97727E+00 

.17500E+01 .75000E+00 

.17500E+01 .52273E+00 

.17262E+01 .50000E+00 

.13452E+01 .50000E+00 

.12500E+01 .50000E+00 

.I1548E+01 .50000E+00 

.77381E+00 .50000E+00 

.82078E-17 .00000E+00 .00000E+00 .92400E+03 

.35833E-03 .00000E+00 .00000E+00 .84725E+03 

.72425E-03 .00000E+00 .00000E+00 -.35881E+03 

.24189E-04 .00000E+00 .00000E+00 -.52996E+03 

.00000E+00 .41985E-04 -.13765E+03 .00000E+00 

.00000E+00 .14047E-02 -.24658E+02 .00000E+00 

.00000E+00 .16518E-02 .93068E+01 .00000E+00 

.00000E+00 .18227E-02 .19794E+02 .00000E+00 

.00000E+00 .21831E-02 -.97037E§ .00000E+00 

.69463E-04 .22128E-02 .00000E+00 .00000E+00 

.28213E-02 .46238E-02 .00000E+00 .00000E+00 

.15391E-02 .12138E-01 .00000E+00 .00000E+00 

.32385E-17 .12683E-01 .00000E§ .00000E+00 

.15391E-02 .12138E-01 .00000E+00 .00000E+00 

.28213E-02 .46238E-02 .00000E+00 .00000E+00 

.69463E-04 .22128E-02 .00000E+00 .00000E+00 

.00000E+00 .21831E-02 .97037E+03 .00000E+00 

.00000E+00 .18227E-02 -.19794E+02 .00000E+00 

.00000E+00 .16518E-02 -.93068E+01 .00000E+00 

.00000E+00 .14047E-02 .24658E+02 .00000E+00 

.00000E+00 .41985E-04 .13765E+03 .00000E+00 

.10789E-02 .13739E-02 -.10000E+04 .00000E+00 

.17573E-02 .24620E-02 -.10000E+04 .00000E+00 

.14720E-03 .40572E-02 -.10000E+04 .00000E+00 

.18298E-02 .70657E-02 .00000E+00 .10000E+04 

.69300E-03 .13851E-01 .00000E+00 .10000E+04 

.68200E-18 .14123E-01 .00000E§ .10000E+04 

.69300E-03 .13851E-01 .00000E§ .10000E+04 

.18298E-02 .70657E-02 .00000E+00 .10000E+04 

.14720E-03 .40572E-02 .10000E+04 .00000E+00 

.17573E-02 .24620E-02 .10000E+04 .00000E+00 

.10789E-02 .13739E-02 .10000E+04 .00000E+00 

.52574E-04 -.21925E-03 .00000E+00 -.10000E+04 

.15442E-04 -.23685E-02 .00000E+00 -.10000E+04 

.44900E-18 -.24171E-02 .00000E+00 -.10000E+04 

.15442E-04 -.23685E-02 .00000E+00 -.10000E+04 

.52574E-04 -.21925E-03 .00000E+00 -.10000E+04 

DISPLACEMENTS AT INTERNAL POINTS 

POINT X Y U V 

1 .50000E-01 .75000E+00 
3 .25000E+00 .75000E+00 
5 .45000E+00 .75000E§ 
8 .65000E+00 .75000E+00 
9 .70000E+00 .75000E§ 

10 .18000E+01 .75000E+00 
11 .18500E+01 .75000E+00 
14 .20500E+01 .75000E+00 
16 .22500E+01 .75000E+00 
18 .24500E+01 .75000E+00 
19 .12500E+01 .50000E-01 
21 .12500E+01 .25000E+00 
23 .12500E+01 .45000E+00 
24 .12500E+01 .10500E+01 
26 .12500E+01 .12500E+01 
28 .12500E+01 .14500E+01 

.17973E-04 

.11601E-03 

.39619E-03 

.I1736E-02 

.14580E-02 

.14580E-02 

.I1736E-02 

.39619E-03 

.I1601E-03 

.17973E-04 

.29477E-18 

.47095E-18 

.34305E-18 

.85212E-18 

.13705E-17 

.22311E-17 

.16589E 

.18458E 

.22240E 

.25230E 

.25163E 

.25163E 

.25230E 

.22240E 

.18458E 

.16589E 

.24514E 

.12253E 

.21906E 

.13990E 

.13330E 

.12828E 

-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-03 
-02 
-02 
-01 
-01 
-01 

STRESSES AT THE BOUNDARY NODAL POINTS 

NODE X Y SXB SYB SXYB 
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1 .13736E-01 .00000E+00 -.76833E+02 .52996E+03 .00000E+00 
21 .56319E+00 .00000E+00 -.14872E+03 .35881E+03 .00000E+00 
41 .II126E+01 .00000E+00 .30248E+03 -.84725E+03 .00000E+00 
46 .12500E+01 .00000E+00 .32588E+03 -.92400E+03 .00000E+00 
51 .13874E+01 .00000E+00 .30248E+03 -.84725E+03 .00000E+00 
71 .19368E+01 .00000E+00 -.14872E+03 .35881E+03 .00000E+00 
91 .24863E+01 .00000E+00 -.76833E+02 .52996E+03 .00000E+00 
92 .25000E+01 .14706E-01 -.13765E§ .38094E+03 .00000E+00 

112 .25000E+01 .60294E+00 -.24658E+02 .38745E+03 .00000E+00 
117 .25000E+01 .75000E+00 .93068E+01 .30245E+03 .00000E+00 
122 .25000E+01 .89706E+00 .19794E+02 .18846E+03 .00000E+00 
142 .25000E+01 .14853E+01 -.97037E+03 -.24593E+02 .00000E+00 
143 .24863E+01 .15000E+01 -.74157E+03 -.28422E-13 .00000E+00 
163 .19368E+01 .15000E+01 -.98134E+03 -.28422E-13 .00000E+00 
183 .13874E+01 .15000E+01 .21656E+04 .00000E+00 .00000E+00 
188 .12500E+01 .15000E+01 .24140E+04 .56843E-13 .00000E+00 
193 .II126E+01 .15000E+01 .21656E+04 .56843E-13 .00000E+00 
213 .56319E+00 .15000E+01 -.98134E+03 -.28422E-13 .00000E+00 
233 .13736E-01 .15000E+01 -.74157E+03 -.28422E-13 .00000E+00 
234 .00000E+00 .14853E+01 -.97037E+03 -.24593E+02 .00000E+00 
254 .00000E+00 .89706E+00 .19794E+02 .18846E+03 .00000E+00 
259 .00000E+00 .75000E+00 .93068E+01 .30245E+03 .00000E+00 
264 .00000E+00 .60294E+00 -.24658E+02 .38745E+03 .00000E+00 
284 .00000E+00 .14706E-01 -.13765E+03 .38094E+03 .00000E+00 
285 .75000E+00 .52273E+00 -.10000E+04 .38357E+04 .00000E+00 
290 .75000E+00 .75000E§ -.10000E+04 .76988E+03 .00000E+00 
295 .75000E+00 .97727E+00 -.10000E+04 .74041E+04 .00000E+00 
296 .77381E+00 .10000E+01 .45463E+04 -.10000E+04 .00000E+00 
304 .I1548E+01 .10000E+01 -.17027E+04 -.10000E+04 .00000E+00 
306 .12500E+01 .10000E§ -.17871E+04 -.10000E+04 .00000E+00 
308 .13452E+01 .10000E+01 -.17027E+04 -.10000E+04 .00000E+00 
316 .17262E+01 .10000E+01 .45463E+04 -.10000E+04 .00000E+00 
317 .17500E+01 .97727E+00 -.10000E+04 .74041E+04 .00000E+00 
322 .17500E+01 .75000E§ -.10000E+04 .76988E§ .00000E+00 
327 .17500E+01 .52273E+00 -.10000E+04 .38357E+04 .00000E+00 
328 .17262E+01 .50000E+00 .24004E§ -.10000E+04 .00000E+00 
336 .13452E+01 .50000E+00 -.29043E+03 -.10000E+04 .00000E+00 
338 .12500E+01 .50000E+00 -.28146E+03 -.10000E+04 .00000E+00 
340 .11548E+01 .50000E+00 -.29043E+03 -.10000E+04 .00000E+00 
348 .77381E+00 .50000E+00 .24004E+04 -.10000E+04 .00000E+00 

STRESSES AT THE INTERNAL POINTS 

NODE X Y SXIN SYIN SXYIN 

1 .50000E-01 .75000E+00 .71437E+01 .30748E+03 .33599E+02 
3 .25000E+00 .75000E+00 -.50055E+02 .43360E+03 .17188E+03 
5 .45000E+00 .75000E+00 -.28878E+03 .78449E+03 .27850E+03 
8 .65000E+00 .75000E+00 -.85555E§ .I1362E+04 .18253E+03 
9 .70000E+00 .75000E+00 -.96161E§ .I0218E+04 .97657E+02 

I0 .18000E+01 .75000E+00 -.96161E+03 .I0218E+04 -.97657E+02 
Ii .18500E+01 .75000E+00 -.85555E+03 .I1362E+04 -.18253E+03 
14 .20500E+01 .75000E+00 -.28878E+03 .78449E+03 -.27850E+03 
16 .22500E+01 .75000E§ -.50055E+02 .43360E+03 -.17188E+03 
18 .24500E+01 .75000E§ .71437E+01 .30748E+03 -.33599E+02 
19 .12500E+01 .50000E-01 .32130E+03 -.92963E+03 -.45669E-12 
21 .12500E+01 .25000E+00 .19696E+03 -.98046E+03 -.48556E-12 
23 .12500E+01 .45000E+00 -.17085E+03 -.10010E+04 -.II087E-II 
24 .12500E+01 .10500E+01 -.12449E+04 -.95462E+03 .34186E-II 
26 .12500E+01 .12500E+01 .38464E+03 -.52482E§ .I0554E-II 
28 .12500E+01 .14500E+01 .18800E+04 -.39172E+02 -.20633E-II 
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F i g u r e  7.12 Distr ibution o f  ty along the bounda ry  y -- 0 .  

F i g u r e  7.13 Distr ibut ion o f  ax a long the boundar ies  y - 0 and y - 1.5.  
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Figure 7.14 Deformed pipe cross-section. 

Figure 7.15 Contours of crx at the pipe cross-section. 
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Figure 7.16 Contours of cry at the pipe cross-section. 

Figure 7.17 Contours of 7-~y at the pipe cross-section. 

7.13 References 

The boundary value problems of the theory of elasticity are well known and the 
interested reader find them in many relevant books, some of which are listed 
below. References [1,2, 3, 11, 12, 13] are addressed mainly to engineers, while 
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[14, 15, 16] are more theoretical. Regarding the application of BEM to two- or 
three-dimensional elastostatic problems, the reader is advised to consult references 
[6] and [17-26]. The BEM has also been employed to analyze composite plane 
bodies with perfect [27] or unilateral [28] bonding at the interfaces. Recently, the 
two-dimensional elastostatic problem was treated by the analog equation method 
[29], a BEM-based solution method that converts Navier's equations into two 
uncoupled Poisson's equations simplifying, therefore, significantly the solution. 
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Problems 

7.1. Derive the boundary integral equations for the plain strain problem taking 
into account initial strains. 
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7.2. Determine the deformation and the stresses in the pipe of  Fig. 7.11, which are 
produced by a temperature change of  A T -- 8 0 ~  The coefficient of  ther- 
mal dilatation is a = 10 -5, while the elastic constants are those of  Exam- 
ple 7.3. 

7.3. Determine the deformation and the stresses in the pipe of  Fig. 7.11, when the 
temperature of  the fluid in the pipe is T~,, = 300 ~ C ,  the ambient temperature 
is Tout = 25 ~ C ,  the reference temperature (temperature of  manufacturing for 
the pipe) is To - 10~ and the internal pressure is p = 1 MPa .  The coeffi- 
cient of  thermal dilatation is o~ = 10 -5 . 

7.4. Determine the deformation and the stresses in the deep beam of  Fig. 7.9 con- 
sidering also the weight of the body, p,o = 25 k N / m  3 . 

7.5. The two-column frame is subjected to uniformly distributed horizontal loads 
p -- 750 k N / m  as shown in Fig. P7.5. The supporting wall is fixed (u  - 0 

and v -- 0)  along its sides AB,  BC,  CD, DE and EF. Determine the de- 
formed shape of  the frame and evaluate its lateral stiffness Kct using the 
theory of  elasticity. The thickness of  the structure is 0.25 m and the elastic 
constants are E = 2.1 x 107 kN,/m 2 and v, = 0.20. 

Figure P7.5 

7.6. The shear wall of  the following figure is subjected to distributed horizontal 
loads p = 50 k N / m .  Determine the deformation of  the plane body and find 
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the stress d is t r ibut ion  a long  the c ross - sec t ions  x -  0.00,  0.90, 1.70 m and 

y - 0.40, 1.60, 4 .00 m .  The  th ickness  is 0 .25 m and the elast ic  cons tan t s  are 

E - 2.1 • 10  7 k N / m  2 and u - 0 . 1 5 .  The  suppor t  cond i t i ons  o f  the s t ruc ture  

are u(x,  0) - 0 and v(x, 0) - 0 .  

Figure P7.6 
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Appendix A 

Derivatives of r 

In this Appendix, we present certain relations which facilitate the differentiation of  
the kernels of  the integral equations. Points inside the domain f~ are denoted by 
upper case letters, e.g. P(x, y), while points on the boundary by lower case letters, 
e.g. q(~C, z/). The angle between the x - a x i s  and the vector r is denoted by o~ and 
the angle between the x - a x i s  and the unit vector n normal to the boundary at 
point q by fl (see Fig. A. 1). Using these two angles, we also define the angle 
a s  

r - angle(r, n) - / ~  - ~ (A.1) 

Referring to Fig. A. 1, it is 

cos~t - (A.2) 

sin ~t - 'q - y ( A . 3 )  
1, 

where 

, -  #(~ - :,:)~ + ( , l -  :J)~ 

Differentiation of  Eq. (A.4) yields 

(A.4) 

~ B  :I: 
r,~ -- -7:~ -- = - cosc~  (A.5) 

' / -  Y ( A . 6 )  r , y  - -  - - ' I :  v - -  = - -  S i l l  Ce  

where the subscripts x ,  y ,  c and 7/ preceded by a comma denote differentiation 
with respect to the corresponding independent variable. 
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Y 

I 

n III ~ ~ Ol 

t r r / 2  . . ~ "  '" 

. . . . . . .  I t  
;T, 

P( . , v )  

P" X 

F i g u r e  A.1 G e o m e t r i c  de f in i t ions  re la ted  to the re la t ive  pos i t i on  o f  

a field po in t  P and a b o u n d a r y  po in t  q .  

N o t i n g  that  

C O S / 3  ~ 7tz 

s in /3  - n:j 

we  can der ive  the f o l l ow i ng  e x p r e s s i o n s  for the de r iva t ives  o f  r 

7:,, - -  7:~ n .  + r., I n,;  

= r e cos /3  + r , , /s in 

-- cos  c~ cos  ,/3 + s in  c~ s in /3  

= co~(Z - ~ )  

--- COS (/) (A.7)  

r t  - - r ~  ny + r,,i n~ 

= - r ~  s in /3  + r,,! cos /3  

= - cos  ~ s in /3  + s in c~ cos /3  

-- - s in ( f l  - c~) 

= - s i n e  (A.8)  
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~ x x  - -  - -  

r , x  

m 

2 
7" 

3 
T 

r 

Similarly, we obtain 

2 r,x 
r ,  y y  : - -  

7" 

r ,  xy z 
7:xT:y 

2 

7" 

2 

7~7pi - - -  

7" 

~01 -- 

2 7:y 

7:zT:y 

r , ~ x  - -  - - r ,  y x  - -  
z:~7:y 

7:~m - - - - E y y  - -  

2 

r,n, - (,:~ cos/3 + r.,, sin/3 )~ 

= r ~  cos fl + r,,/~: sin fl -- 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 
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r'-Y-Y (r . ,  cos/3  - r~ s in /3 )  
r 

rtr, v (A.19)  

r, ny -- (q~ cos/3  + r., sin ,3 ),y 

= re, ' cos fl + r,,n, s in /3  

r'-~ (-r , , ,  cos /3  + r~ s in /3 )  
r 

Err,. (A.20)  

r,t. - ( - ' : e  sin fl + r,,, cos/3 ),. 

-- - r :~.  s in /3  --+- 7:,1. cos 

':v (r~ COS fl + r,,, s in f l )  
7' 

?:,v~n (A.21)  

rtu - ( - r e  si,l fl + 7:,, cos fl),s~ 

= -7:~,~ sill fl + 7:,,s COS fl 

r'-~ (E e cos fl + r,,, sin f l)  
7" 

(A.22)  
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Gauss Integration 

B.1 Gauss integration of a regular function 

The success of BEM as a computational method is contingent upon evaluating 
accurately line and domain integrals. Any numerical integration method can be 
utilized, e.g. trapezoidal rule, Simpson rule, Newton-Cotes rule, etc. The numerical 
methods approximate an integral with a sum of products of the values of the inte- 
grand at specific points of the integration interval, usually equidistant, multiplied 
by known coefficients, the weight factors (or weights), resulting from the employed 
integration rule. Hence, an essential criterion for choosing the integration rule is the 
achievement of the desired degree of accuracy in the approximation of the integral 
by utilizing the lowest possible number of integration points. The Gauss integration 
method satisfies this criterion. In this method, the points are not equidistant but 
they arrange themselves in the optimal pattern. The weight factors are also adjusted 
in this optimization process. The concept behind the Gauss integration is quite 
simple, and will be explained in the sequel. 

Let us consider the integral 

F ' I -- f(~)d~ (B.1) 
- I  

It is approximated by the sum 

I ~ I,~ -- ~ f((k) wk (B.2) 
k = l  

where f(~k) (k - 1,2,..., n) are the values of the function f(~) at the n points ~k 
( -1  < ~k < +1) and 'wk the associated weights. The points G,  which are called 
Gauss integration points or simply Gauss points, are not equidistant within the 
integration interval, but, for a given n ,  their location and the associated weights 
are chosen so that the error E,, = I - I,, becomes minimum. 
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We first study the trivial case where the function f(~) is a linear polynomial 

f(~c) -- ao + al (B.3) 

The exact value of the integral is 

f l 

I = (ao + al~)d~ 
1 

-- ao ~ -+- a 1 2  _1 

= 2ao 

while the approximate value obtained from Eq. (B.2) for n - 1 is 

I1 - -  (ao + a1~1) Wl 

Therefore, the error is 

E 1 ( a o ,  a I ) - I - I, - 2a,, - (ao + a ~ l ) w l  

and is minimized for 

OE 
i = 2 -  w l - 0 

O a() 

OE1 
Oal 

= -'wa (l - 0 

(B.4) 

which yield 

~1 - -  O ,  ~ll I - 2 

and E1 (ao, al) - 0. 

We notice that Eq. (B.2) gives 

f--?x f ( ~ )  dc~ -- 2 f ,  

= 2a0 (B.5) 

where fo -- f(O). 

Namely, the value of the integral is independent of the slope a~ of the straight line 
representing the function. Hence, the definite integrals on the interval [ -1 ,  +1] of 
all the linear functions passing through the point (0, f~) have the same value (see 
Fig. B.1). 
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Figure B.I Typical linear polynomials. 

Consider now the case of a function f(~c) which is a quadratic polynomial. The 
exact value of  the integral is 

I - y j l  ( a~j + al ~ + a2 ~ 2 ) d~ 

= ~ o ~ + ~ - 7 + ~ , ~ T _  ~ 

2 
= 2ao + .  a2 

3 

while the approximate one for two Gauss points (n  = 2 ) is 
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12 --  f( 2)W2 

=(ao -It-al ~1 "P-a2 )Wl +(ao-[-al ~2 + a2  2)w2 

The resulting error is 

E2(ao, al , a2 ) - I - I2 

2 = 2ao -+--~a2 --(ao +al ~l +a2~2)Wl 

- ( a o + a l ~ 2 + a 2 ~ ) w 2  (B.6) 

which is minimized under the following conditions 

OE~ 
Oao 

= 2 -  wl - w~ - 0 (B.7) 

OE2 
Oal 

= -~1 wi - ~2 w2 - 0 (B.8) 

OE2 2 
= - -  ~ ,w~ - ~,~ w2 - 0 (B.9) 

Oa 2 3 

The above three simultaneous equations include four unknowns,  w~, w2, ~1 and 
~2. Therefore, one of  them can be chosen arbitrarily, and since it is convenient to 
place the points ~ and ~ symmetrically with respect to the origin, we set 

~2 -- -~1 (B.10) 

From Eq. (B.8), we obtain wl - w2 and from Eq. (B.7) we find 

wx - w2 - 1 (B.11) 

Finally, Eq. (B.9) gives 

1 
~ - ~ - 0 .o773o0269189626 (B.12) 

Introducing the above values of  ~1, (2, Wl and w2 into Eq. (B.6), the error be- 
comes E2(ao, ai, a2 )  - 0. The approximate value of  the integral is computed from 
the sum 

12 -- f(~l)  Wl + f(~2)W2 (B.13) 

where ~1 and ~2 are given by Eqs. (B. 10) and (B. 12) and ,wl, w2 by Eq. (B. 11). 
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We consider the case where the function f(~) is a cubic polynomial and we apply 
the same procedure. The exact value is 

f _ l  ~2 :3 I:,-- (ao+a,~+a2 + a a ~  )d~ 
1 

2 
= 2a0 + ~ a2 

Using again two Gauss points (n - 2 ), the expression for the error becomes 

( 2) 
E3(ao,al,a2,a3)- 2 a o + 3 a 2  - ( a o + a , ~ ,  + a 2 ~ + a 3 ~ C ~ ) W l  

which is minimized if the following conditions are satisfied 

OE:~ 
Oao 

= 2 -  wl - w2 - 0 (B.14a) 

OE:~ 
O a l  

--- - -~1 'Wl - -  ~2 W2 - -  0 (B. 14b) 

OE:~ 2 
: ~[2 ,/UI __ ~2 ,W 2 __ 0 (B. 14c) 

Oa 2 3 

0 E 3  : - ~ i  ~ ,/v I - ~�89 w 2 - 0 (B. 1 4 d )  
0 a 3 

The solution ' / U  1 = 'W 2 : 1 and (1 = -~2 = 1/-,/-3, obtained when f(~) is a sec- 
ond order polynomial, is also a solution of the simultaneous equations (B. 14), and 
yields Ea(ao, al, a2, a:~) = 0. Hence, Eq. (B.2) renders exact values for the integrals 
of the second and third order polynomials using the same Gauss integration rule, 
i.e. the same integration points and weights. 

This procedure can also be applied for higher order polynomials. In general, it can 
be proved that the formula of Eq. (B.2) with n terms gives the exact value for the 
integral of a polynomial f(~) of order less than or equal to 2 n -  1. However, this 
procedure can hardly be employed to determine the coordinates of the Gauss points 
and the weight factors, because it becomes complicated and laborious for increas- 
ing degree of the polynomial. The Gauss points can be obtained by a simpler 
method, which uses Legendre's orthogonal polynomials [1, 2] to represent the 
function f(~) and that is why it is known as Gauss-Legendre integration. 
Legendre's polynomials are defined as 
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1 d n )~ 
P"(~) - 2" n ! d-~;~ (~2 _ 1 (B.15) 

For example, the first, second and third order polynomials are 

for n - l "  P I ( ~ ) - ~  

1 
for n - 2 "  P 2 ( ~ ) - 2 ( 3 ~  2 - 1 )  ~- (B.16) 

1 
for n - 3 "  P a ( ~ ) - 2 ( 5 ~  3 - 3 ~ )  

J 

It is proven that the coordinates ~Ck of the integration points are the zeros of these 
polynomials. The weight factors wk are computed by the expression 

2 ( 1 - ~ )  (B.17) 
W k = n2 [p,z_l(~k)]2 

Table B.1 provides the coordinates of the integration points and the weights for 
various values of n.  

If f(~c) is not a polynomial, the integral can be evaluated approximately as 

F f (~)d~ ~ f(~k)Wk (B.l 8) 
- l  k = l  

where the function is actually approximated by a polynomial of degree 2 n -  1. 
The error associated with the Gauss-Legendre integration is given by Lanczos in 
the following form [1] 

E , ~ -  I - I , ~ -  
2n + 1 

f(1) + f ( - 1 ) -  I,, - ~ Wk ~k f'(~k) 
k = l  

(B.19) 

in which n is the number of integration points. This estimation is very good for 
smooth functions f(~). 

Usually, the interval over which a function is integrated differs from the interval 
[-  1, + 1]. Suppose that we have to evaluate the integral 

I - [,b f (x )  dx (B.20) ,3 a 

Using the transformation 

b - a  b + a  
x -- ~ ~  + ~ (B.21) 

2 2 
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Table B.I Abscissas and weights for the Gauss-Legendre integration. 

I - f (~)  d~ ~ f(~k) wk 
1 k = l  

n -t-~k wk 
n = 2 0.57735 02691 89626 1.00000 00000 00000 

n -- 3 0.00000 00000 00000 0.88888 88888 88889 
0.77459 66692 41483 0.55555 55555 55556 

n = 4 0.33998 10435 84856 0.65214 51548 62546 
0.86113 63115 94053 0.34785 48451 37454 

n = 5  0.00000 00000 00000 0.56888 88888 88889 
0.53846 93101 05683 0.47862 86704 99366 
0.90617 98459 38664 0.23692 68850 56189 

n = 6  0.23861 91860 83197 0.46791 39345 72691 
0.66120 93864 66265 0.36076 15730 48139 
0.93246 95142 03152 0.17132 44923 79170 

n = 7  0.00000 00000 00000 0.41795 91836 73469 
0.40584 51513 77397 0.38183 00505 05119 
0.74153 11855 99394 0.27970 53914 89277 
0.94910 79123 42759 0.12948 49661 68870 

n : 8  0.18343 46424 95650 0.36268 37833 78362 
0.52553 24099 16329 0.31370 66458 77887 
0.79666 64774 13627 0.22238 10344 53374 
0.96028 98564 97536 0.10122 85362 90376 

n = 9  0.00000 00000 00000 0.33023 93550 01260 
0.32425 34234 03809 0.31234 70770 40003 
0.61337 14327 00590 0.26061 06964 02935 
0.83603 11073 26636 0.18064 81606 94857 
0.96816 02395 07626 0.08127 43883 61574 

n = 1() 0.14887 43389 81631 0.29552 42247 14753 
0.43339 53941 29247 0.26926 67193 09996 
0.67940 95682 99024 0.21908 63625 15982 
0.86506 33666 88985 0.14945 13491 50581 
0.97390 65285 17172 0.06667 13443 08688 

n = 12 0.12523 34085 11469 0.24914 70458 13403 
0.36783 14989 98180 0.23349 25365 38355 
0.58731 79542 86617 0.20316 74267 23066 
0.76990 26741 94305 0.16007 83285 43346 
0.90411 72563 70475 0.10693 93259 95318 
0.98156 06342 46719 0.04717 53363 86512 

n = 16 0.09501 25098 37637 0.18945 06104 55068 
0.28160 35507 79258 0.18260 34150 44923 
0.45801 67776 57227 0.16915 65193 95002 
0.61787 62444 02643 0.14959 59888 16576 
0.75540 44083 55003 0.12462 89712 55533 
0.86563 12023 87831 0.09515 85116 82492 
0.94457 50230 73232 0.06225 35239 38647 
0.98940 09349 91649 0.02715 24594 11754 
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Table B.2 Computed values of  the integral I -  f l  a Sin2 x 
x 

numbers of  Gauss points, n .  

dz for various 

f l  a sin2x dx  n ~k Wk 
X 

1 ~1 = 0 wl = 2.0000000000 0.82682181 

2 ~1 = -0 .5773502692  Wl = 1.0000000000 0.79856002 

& = -~1  w~ = w, 

3 ~l = -0 .7745966692  wl =0 .5555555556  0.79465269 

~2 = 0 w2 = 0.8888888889 

~3 = - - ~ 1  W3 = Wl 

4 ~1 =-0 .8611363116  Wl =0.3478548451 0.79482835 

~c 2 = -0.3399810436 w2 = 0.6521451549 

5 ~c I = -0.9061798459 //31 = 0.2369268851 0.79482516 

~2 = -0.5384693101 w2 = 0.4786286705 

~c~ = 0 w:~ = 0.5688888889 

& = - &  w~, = w~ 

~,~ = - ~ ,  w5 = Wl 

Exact value 0.79482518 

the interval of  Eq. (B.20) is mapped onto the interval [-1,  + 1]. Thus, 

fo~ b-a f+~ I - -  f(37)d37 - f ( ~ ) d ~  
2 1 

(B.22) 

Example  B.I 

Determine the value of  the integral 

f l  a sin 2 x 
I ~ _ _  

37 
d x  

The transformation x = ~ + 2 yields the expression of  the above integral in the 
interval [ -  1, + 1], which is of  the following form 
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Table B.3 Abscissas and weights for the Gaussian quadrature of a 
function with logarithmic singularity. 

; • I -- f (~ )  d~ ~ f (~k)Wk 
1 k = l  

T~ ~k Wk 

n = 2 0.11200 88061 66976 0.71853 93190 30384 
0.60227 69081 18738 0.28146 06809 69615 

n = 3  0.06389 07930 873254 0.51340 45522 32363 
0.36899 70637 15618 0.39198 00412 01487 
0.76688 03039 38941 0.09461 54065 661491 

n = 4  0.04144 84801 993832 0.38346 40681 45135 
0.24547 49143 20602 0.38687 53177 74762 
0.55616 54535 60278 0.19043 51269 50142 
0.84898 23945 32985 0.03922 54871 299598 

n - - 5  0.02913 44721 519720 0.29789 34717 82894 
0.17397 72133 20897 0.34977 62265 13224 
0.41170 25202 84902 0.23448 82900 44052 
0.67731 41745 82820 0.09893 04595 166331 
0.89477 13610 31008 0.01891 15521 431957 

n = 6  0.02163 40058 441169 0.23876 36625 78547 
0.12958 33911 54950 0.30828 65732 73946 
0.31402 04499 14765 0.24531 74265 63210 
0.53865 72173 51802 0.14200 87565 66476 
0.75691 53373 77402 0.05545 46223 248862 
0.92266 88513 72120 0.01016 89586 929322 

n = 7  0.01671 93554 082581 0.19616 93894 25248 
0.10018 56779 15675 0.27030 26442 47272 
0.24629 42462 07930 0.23968 18730 07690 
0.43346 34932 57033 0.16577 57748 10432 
0.63235 09880 47766 0.08894 32271 376579 
0.81111 86267 40105 0.03319 43043 565710 
0.94084 81667 43347 0.05932 78701 512592 

n = 8  0.01332 02441 608924 0.16441 66047 28002 
0.07975 04290 138949 0.23752 56100 23306 
0.19787 10293 26188 0.22684 19844 31919 
0.35415 39943 51909 0.17575 40790 06070 
0.52945 85752 34917 0.11292 40302 46759 
0.70181 45299 39099 0.05787 22107 177820 
0.84937 93204 41106 0.02097 90737 421329 
0.95332 64500 56359 0.03686 40710 402761 
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I - P~J~ sin2(~ + 2) d~ 
d -  

The integral is computed using Gaussian integration. Results for various values of 
n are presented in Table B.2. We notice that a five-point Gaussian quadrature is 
sufficient to approximate the value of the integral to seven significant figures. 

B.2 Integrals with a logarithmic singularity 

The Gaussian integration gives good results when a function f(~) varies smoothly 
within the integration interval. If the integrand is singular the Gauss-Legendre 
integration cannot be employed and for this purpose special integration rules have 
been developed which depend on the type of singularity. Integrals whose integrand 
includes a logarithmic singularity are approximated by the formula [3] 

f)~f(~) g~ d~ ~ ~-'~f(~k)Wk (B.23) 
k = l  

The integration points ,~k and the weights wk are given in Table B.3. 

B.3 Double integrals of a regular function 

The Gaussian integration can also be employed to evaluate double integrals. In this 
case the integration rule depends on the geometry of the domain over which the 
integration is performed. Various Gauss integration rules have been developed for 
domains of specific geometry, such as rectangles, triangles, circles as well as do- 
mains that can be transformed into one of those geometries. Efforts have been 
made to develop Gauss integration rules for domains of arbitrary geometry, e.g. the 
method of finite sectors [4]. In the sequel, we will limit our discussion to Gaussian 
quadratures for rectangular and triangular domains, which are the common geome- 
tries for two-dimensional discretizations. 

B.3.1 Gauss integration for rectangular domains 

For domains resulting as Cartesian products of lower dimensions, e.g. squares, 
cubes, cylinders, etc., integration rules can always be formulated by multiplying 
rules of lower dimensions [2, 5]. For example, if 

f_~' f(~)d<~ ~ ~ f(~k)Wk (B.24) 
k = l  

is a one-dimensional rule, then 

1 1 ;=1 i=1 
(B.25) 
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Table B.4 Coordinates and weights for Gauss integration on square 
domains of side 2h. 

Number and position 
of the Gauss points xk Yk wk 

o o 

+h o 

0 •  1~ 

q-h 4-5 4-5 :t:h ~ 1//4 
3 3 

() 0 1% l 

• + t '~  2~2 4 

() -t-h, ~~~ 1%1 

• ~ () 1%1 

is the corresponding two-dimensional rule. These rules, however, are not necessar- 
ily on the side of economy, with regard to the number of integration points. For 
square domains ~ :  j:rl < h,  lYl < h ,  the following simple rule can be employed 
[2] 

4h 2 ~ k=l 
(B.26) 

The coordinates of the Gauss points xk and Yk and the associated weight factors 
are given in Table B.4. The order of the error is E = O(h 4) for the first two cases 
and E = O(h 6) for the third one. 



300 B O U N D A R Y  E L E M E N T S  

B.3.2 Gauss integration for triangular domains 

The integration over a triangular domain is simplified by employing a natural coor- 
dinate system, which here is referred to as triangular coordinate system (see 
Fig. B.2). The sides al,  a2, a3 are designated by the number of the opposite verti- 
ces. The triangular coordinates ~ (i = 1, 2, 3) for an interior point P are defined 
as the ratios of the areas A~ to the total area A of the triangle, 

A1 A2 Aa 
~1 - -  - - ,  ~2 = - - ,  ~:~ = (B.27) 

A A A 

Since the sum of the three areas is 

A I + A 2 + A : ~  = A  

it is evident that 

Figure B.2 Triangular coordinate systems. 

The Cartesian coordinates x and y of point P are related to the triangular coordi- 
nates as 

Y - -  ~lYl + ~2Y2 -k- ~:~y:~ 

(B.29) 
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where xi, yz (i = 1, 2, 3 ) are the coordinates of the triangle's vertices. Equations 
(B.29) can be checked at a few specific points. For example, at the centroid of the 
triangle it is: 

A 
A1 -- A2 -- A3 = ~ ,  

3 

Xl ~- X2 + X3 Yl + Y2 + Y3 x - and y - 
3 3 

while at point 2 (see Fig. B.2): A2 - -  A, A1 = A3 = 0,  x = x2 and y = Y2. 

Equations (B.28) and (B.29) yield the relation between rectangular and orthogonal 
coordinates which can be written in matrix form as 

1 

X 

y 

1 1 1 

X l 2; 2 X 3 

Yl Y2 Y3 

~2 (B.30) 

Figure B.3 Integration over a triangular domain. 

The integration over the triangular domain can be performed by considering the in- 
finitesimal parallelogram shown in Fig. B.3. Denoting by Sl, s2 and s3 the dis- 
tances of point P from the corresponding opposite sides and by hi, h2 and h3 the 
respective heights of the triangle, we can write 
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A - aihi and Ai = aisi (i = 1,2,3) 
2 2 

which yield according to Eq. (B.27) 

s~  = A__!.~ = ~, 

hi A 

and hence 

Si - -  hi  ~i 

So, the surface element dA can be expressed as 

dA - dsldS2 
sin 0:~ 

(h,d~l) (h~d~2) 

sin 03 

= 2A d~Cl d~2 (B.31) 

Consequently, a domain integral may be written as 

f A f ( x , y ) d A  - 2A f ~  f~  '-~' f ( ~ , ~2 , ~:~ ) d~'2 d~l 

1 F I - ( I  
= 2A /[~1,~2,(1 - -  ~1 - -  ~ 2 ) ] d ~ 2  d~ 

),dO 
(B.32) 

If f(~l,~2,~:~) is a polynomial term of the form .~' ~ ~:'~, where a ,  b and c are 
non-negative integers, then we have [6] 

fA a t bY cV " - " " " 2A (B.33) ~ ~' ~:i dA (a + b + ~'~ + 2)! 

A comprehensive introduction to triangular coordinates can be found in the book 
by Gallagher [7]. 

Gauss integration rules over triangles have been derived by means of triangular co- 
ordinates and have the form 

z0 I 1 I -- f(~,, .~2, ~:~) d~2 d~, 
oO 

~ f ( ~ ,  ~ ,  ~:~) wk (B.34) 
k=l 



Appendix B Gauss Integration 303 

The coordinates ~1 k , ~ ,  ~ and the weight factors wk for integration rules which 
are accurate for polynomials of order 1 to 5 are given in Table B.5. These values 
have been derived by Hammer et al. [8]. 

Table B.5 Coordinates and weights for Gauss integration over triangular 
domains. 

Number and position 
of the Gauss points 

k ~1 ~ ~ ~ 

1 1~ 1~ 1~ 1 

Degree of accuracy: 1 

1 1~ 1~ 0 1~3 

2 0 1/42 1/42 l~a 

Degree of accuracy: 2 3 ~ 0 1/2 

Degree of accuracy: 3 

2 ~ E E 25//48 

3 E E E ~ s  
4 E E E ~ s  
1 0.33333333 0.33333333 0.33333333 0.22500000 

2 0.79742699 0.10128651 0.10128651 0.12593918 

3 0.10128651 0.79742699 0.10128651 0.12593918 

4 0.10128651 0.10128651 0.79742699 0.12593918 

Degree of accuracy: 5 

0.05971587 0.47014206 0.47014206 0.13239415 

0.47014206 0.05971587 0.47014206 0.13239415 

7 0.47014206 0.47014206 0.05971587 0.13239415 
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Example B.2 

The integrals below are computed :using a 4-point Gaussian integration over the tri- 
angle shown in Fig. B.4. 

Figure B.4 Triangular domain of integration. 

Equations (B.29) applied to the triangle of Fig. B.4 become 

x - 2 ~ 1 + 3 ~ + ~ : ~  

y - ~, + 2&_ + 3~:~ 

and formula (B.34) yields 

4 YA (1)dA - E (1)k "'k 
k - I  

-- (1)(- 27A ---~-) + (1) ( 25A ---~-) + (1) ( 25A - ~ )  + (1)( 25A 
- 7  

- A  

4 

k = l  

1 1 1 = 2 •  3 •  
3 3 3 

27)  
-T~  A + 

3 1 1)(25) 2 x - + 3 x - + -  A 
5 5 5 

1 3 1 -+- 2 •  3 •  
5 5 5 

25) ~--~A + 1 ~ 3)(25)  2 x - + 3 x - + -  A 
5 5 5 

= 2A 
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4 fa y2 dA ~-~' ( ~  + 2~2 k + 3~:~: )2 
- -  W k 

k = l  

1 + 2 x _ + 3 x _  - A + + 2 x - + 3 x  A 
- 3 a 5 5 7g 

+ 1 + 2 x _ + 3 x _  A 
5 5 

1 1 3) 2 
+ - + 2 x - + 3 x -  

5 5 5 

25 

_ 25 A 
6 

The computed values are exact because the 4-point integration rule is exact for 
polynomials up to the third degree. 

B.4 Double singular integrals 
The domain discretization method to compute the integrals (4.30) for Poisson's 
equation or (7.105) and (7. l l 6) for plane elasticity problems requires the evalua- 
tion of double integrals, whose integrand behaves like griT', 1 / r  or 1 / r  2 . When 
the integration is performed over the element on which the field point lies, these 
integrals become singular or hyper-singular. Several special methods have been 
developed for their evaluation [9]. The method presented here is relatively simple 
and effective. It was developed in [1 O] for the fundamental solution of the Laplace 
equation and here it is extended also to that of Navier's equations. 

B.4.1 Domain integrals of the fundamental solution for the Laplace equation 

Consider the domain integral on the c - th  element 

vd[2 (B.35) 
~' 

where v(r) is the fundamental solution for the Laplace equation 

1 - ~ " , " ,  " - I Q - P I  (P, QE[Y) (B.36) 
27r 

The domain integral (B.35) can be evaluated by converting it into a regular line 
integral on the boundary F':. This is achieved using Green's identity 

f~,~ / f~ (OU Ou) (uV2U-UV2u]df~- u - U - -  ds (B.37) "' On On 
which for functions u and U defined as 

u = 1 and V2U = v* (B.38) 
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where 

I v* - - ~ ( g n r  + 1) 
27r 

(B.39) 

yields 

f ~  v* dQ - fr" Q.U ds (B.40) 
On 

Combining Eqs. (B.36) and (B.39), we find that 

fr"  v dR - ~f~,, v* dR A C 

27r 

- -  f r  U'~ d s -  A': (B.41) 
" 27r 

where A ~' is the area of the e - th  element. 

The function U may be established by expressing the second of Eqs. (B.38) in po- 
lar coordinates, 

1 d dU 1 
' r ~  - ( ( m ' +  1) 

7" dT" tiT" 

which gives after two consecutive integrations 

U 1 - ~ 7 "  griT" (B.42) 
8rr 

In the case that the domain integral involves derivatives of v,  the function U in 
Eq. (B.41) is replaced with the respective derivatives. Namely, 

f n '  v .... ttt~ - f , ,  U ...... ds ( m -- x, y, xx, xy, yy ) (B.43) 

where subscripts preceded by a comma denote differentiation. 

The derivatives U.,, and U ........ are evaluated from the relations 

u , ,  - 1(2c.~,~-  + 1)~.,:,, 
8rr 

(B.44a) 

1 
87r 

(B.44b) 

U , y n  --- 
I 

I(2/~nr + 1)sin(c~ + O)+  2sin a cos 0] 
87r 

(B.44c) 
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U , ~  : 1 (cos r - sin 2a sin r  (B.44d) 
47rr 

1 U, zyn = - - C O S  2ct sin r (B.44e) 
47rr 

U, yyn =--~-1 ( c o s r 1 6 2  
47rr 

(B.440 

where o~ : angle(x, r) and r = angle(r, n) (see Fig. A. 1). 

B.4.2 Domain integrals of the fundamental solution for the Navier equations 

Consider the domain integral on the e- th  element 

~ ,  v*d~ (B.45) 

where 

v * - - U ~  or U,r, or U~:,j or U,~v (B.46) 

The integral of Eq. (B.45) can be evaluated by converting it into a regular line 
integral on the boundary F". This is achieved using Eqs. (7.139) and (7.140). For 
example, choosing V - (  as the potential function in Eqs. (7.135) and (7.139), 
results in 

f r -  2(1 - i7) F., d~2 
di 87rG 

[ 0r 
o,--T - -  (./),( lt.r d ,s' 

+ f ,  (u,,, n~ + u,,:~ ,n,:, ) ~ts (B.47) 

The domain integrals of the kernels To,, 7;~.,,, r/, j, T,~:j, o~:~, a~.,~ . . . .  , 7-~::,j,~, ~ ,  
~:,~ . . . .  , "r%.:j,~ are expressed in terms of the derivatives of (B.45), and are evaluated 
after they have been converted to line integrals. 
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Appendix C 

Answers to 
selected problems 

Chapter 2 

2.1. (i) f r  z2 n,.ds or /'_, :ryT~,:vds 
2 , - /I  

(ii) f i  z~.],~.d,s or f v2 . R 7~:jd.,; 

�9 ' 2 

(iii) 2.~! 7~:rds or n,!jds 
" 2 "--~- ' 

JI f" z:~ 7~ds o r  J~I '  :c'2YTt:vds (iv) 
3 

3 

f I f l il] 3 (v) zy~7;,:rds or =- 

1 
(vi) f r3(z :~n ,  + ?l:~n,:v)ds or frZy(yn:r  + z,~:~)ds' 

(vii) frSinz,t~d,s or frYCOSxn~ds 

2.2. Hint." 
(a) Use the transformation relations from Cartesian to polar coordinates 

x - r c o s 0  and y - r s i n 0  

(b) Apply the chain rule of differentiation to express the derivatives in polar 
coordinates 
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O = r ,  0 0 0 0 0 
--O x ~ + O, x --,00 --O y = r, u -~r + O, v --00 

sin 0 cos 0 
r , x - c o s 0 ,  r , v - s i n 0 ,  0,x = - ~ ,  O,u- 

r r 

(c) Repeat the differentiation to obtain the second derivatives and by adding 
them derive the Laplacian in polar coordinates 

02 1 0 1 02 
V 2 = ~ + - - -  + - - -  

Or2 1" Or r 2 002 

which for the axisymmetric case, v = v(r), becomes 

272 - 02 1 0 1 0 0 
- - O r  2 + - - - - =  r - -  r Or  r Or  -~r 

(d) Establish a particular solution of  the equation 

272U- gnr 
(e) Apply Green's  identity for u - 1 and U to obtain 

gnr dQ - ~ O--~U ds, where U - 1 r2(gnr_ 1) 
On 4 

2.3. i 
b 

( i )  5 ( x  - x ( , )  d x  - 1 

~~' f(O) 
(ii) ~i(kx)f(x) dx - (hint." use appropriately Eq. 2.40) 

I1,:1 

~"  5(-x) dx - 1 (iii) 

(iv) - ( - 1 ) "  r 

2.4. Hint." Use appropriately Eq. (2.40). 

2.5. Hint." Apply Eqs. (2.40) for x - r cos 0, y - r sin 0 to obtain 

~(/ '  - P 0 )  - ~ ( x  - x 0 ) ~ ( Y  - ,V0) - ~ ( "  - ' ~ 0 ) ~ ( 0  - 0 0 )  
7" 

2.6. Hint." Apply repeatedly the Gauss-Green theorem for all terms in the integral 

f ~ v L(u) d~  

until all derivatives of  u are eliminated and group appropriately the bound- 
ary terms. 

2.7. Hint." Apply Green's identity for u and v - 1. 
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2.8. (iii) ~[vL(u)-uL' (v)]dU~- f r  Ou 
V ~  

On 
Ov u - - +  uv(a . n) 
On 

ds 

Chapter 3 

1 3.1. u - --xy(x2y + xy 2) 
12 

3.2. f v f d ~ - l R 2 ( 2 g n R - 1 ) f ( x o , y o ) ,  
4 

f(xo,yo) - C~o + c~1Xo + c~2 yo 

3.3. (i) Hint." use Eq. (3.49) and differentiate it with respect to x .  See also 
Section B.4 of Appendix B. 

(ii) Hint." Establish a function F satisfying the equation 

y 7 2 F _  x 2 + y2 

Then apply Green's identity for v -  gnr/2~r and u - F ,  differentiate 

it with respect to x and use Eq. (2.42). 

3.4. Hint." Show first that the integral representation (3.18) can be written as 

,,,(p) _ _ f { ,,(p, q)0,,(q), [Onq u(q) - u(p)]Ov(P,onq q------~) } ttsq + u(p) 

where p is a point on F. Then, to obtain Ou/Onp, differentiate with respect 

to a direction n and find the limit as P ~ p c F choosing n to coincide 

with the normal to the boundary at point p E F .  The limiting procedure is 

similar to that of Section 3.3. Work in the same way to obtain Ou/Otp. For 

points p where the boundary is smooth, we find 

10u(p) = -fr  { Or(p, q)Ou(q) 
2 One, One, Onq 

10u(p)__ _ f J Ov(p, q)Ou(q) 
2 Otp J r [  Otp Onq 

0 2v(p, q) } dsq 
[u(q) - u(p)] OnpOnq 

02v(p, q) } 
[u(q)-u(p)]--~~On- q dsq 

3.5. Hint." For p E F use the integral representations of Ou/Onp and Ou/Otp to 

derive the expressions for Ou/Ox and Ou/Oy. 
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Chapter 4 

4.1. Hint." See subroutine DERIV of program FLUIDCON in Chapter 6. 

4.3. Hint. 
(a) Evaluate the matrices [H] 1 , [G] 1 , [HI 2 and [G] 2. 

Domain f~x is isotropic. The boundary integral equation is given by 
Eq. (3.29), which after discretization yields 

[H]l{u}l _[G]l{qn}l,  {q,~}l _ {u,,,}l (u,,~ - V u - n )  

The matrices [HI 1 , [G] 1 are evaluated as described in Section (4.3). 

Domain f~2 is orthotropic. The boundary integral equation is given by 
Eq. (3.79), which after discretization yields 

[H]2{u} 2-[G]2{qn} 2, {qn} 2 -{u , ,n}  2 ( u , , n - V u . m )  

where 
f t  1 7:,__ ! 1 

HO - -  "J 27r,,/IDI r ds,, - -~ 5,j  

1 flm'dsq 
G,j - ~., 27r,,/ID----~ 

in which 

~(q, p,) - ~/(~ -~:~:~,)~ (7/-  Y, )2 
+ 

q' (~ , ' l )  E Fj and p," (:z:,,y,) E F,. 

The elements of these matrices can be evaluated in a way similar to that 
presented in Section 4.3. 

(b) Apply the given boundary conditions on the outer boundaries and the 
interface continuity conditions to obtain the matrices [A] and {B} as pre- 

sented in Section 4.9. 

Chapter 5 

5.1. 1 t- 1 ~ +  9 2 9 3 _ 9 2 7 ~ _  9 ~2 27 s 
(i) ~ - - 1 6 - 1 6  ]--~ - ] - ~  , 02 16 16 ]-6 + - ~  

_ 9 + 2 7 ~ _  9 ~2 27 :~ 
~3 1--6 16 1 - 6 - ~  ' 

1 1 ~ + 9 ~2 9 ~3 
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1 +  1 ~ + 2 ~ 2  2~3 _ 2  4 ~ _ 2 ~ 2  4~3 
(ii) 2/31 -- --~ 6 3 '  -- 5 ' //32 3 -- 3 3 -~ 3 ' 

_ 2 + 4 ~ _ 2  2 4~3 
, 

1 1 ~ +  2~2 2 
~ 4 -  6 6 ~ + ~ c  

5.2. The exact value for the area of the circular sector is given as 

Aexact = 0('-!/~2 ~ Aexact = 3____~_~ 
2 8 

(i) For a linear element approximation: Alinear = ! R 2 sin 00 
2 

(ii) For a quadratic element approximation follow the steps: 

(a) Use polar coordinates to evaluate the area 

A = _1 f o,, r2 dO 
2.,o 

(b) Transform the integral on the interval - 1  < ~ _< 1 

i f fl 4x(~)2 + Y(~c) 2 IJ(~C)ld~ A 
2 i 

where x(~) and y(C) are obtained from Eqs. (5.66) and the Jaco- 

bian [J(~)l from Eq. (5.68). 

(c) Evaluate the integral using a four-point Gauss integration. 

(iii) For a cubic element approximation establish first 
4 4 

x(,~) - ~ xk ~/'k(,~) and y(~) - ~ Yk ~k(~) 
k=l k=l 

from the known coordinates of the four nodal points, which are 

O0 ' O0 :rk -- RCOS ( k - l ) 3  and Yk -- R s i n  ( k - l ) 3  

where k = 1,2,3,4. The shape functions ~k({) are those derived in 

Problem 5.1-(i). Then, follow the same procedure as in case (ii) to 
evaluate the area integral. 

The exact value of the area along with the computed values for the three 
types of elements are given in the following table. 

Exact Linear Parabolic Cubic 

Area 1.178097 1.164686 1.178086 1.178099 

Error (%) 0 1.14 9.34 • 10 -6 -1 .70  • 10 .6  
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5.3. The integrand has a peak at x -  0.25 (see its graph in the figure). The 
interval is divided into subintervals as in the table and Gauss integration is 
applied on each of them 

Number of Number of 
Subintervals 

subintervals Gauss points 
f _~l dx ]4 

[ (x-  0.25) 2 +0.05 

4 [-1.00, +0.1 O] 8 35124.17 

[+0.1 O, +0.25] 6 

[+0.25, +0.40] 6 

[+0.40, +1.00] 8 

Exact value 35123.22 

1 6 0 0 0 0  - 1 1 1 1 1 1 1 1 

- - t - -  - - I -  I . . . . .  I . . . . . .  I - ---1 - 

I I 

I I 

_ 

I I 

I I 

" - I  . . . . . .  - 

I I 

_ .  i I 

I I 

I I t 

' / V ' 

I I I 

' ' /  ' \  ' 
, ,/  , \  , 

] 1 I ! 1 1 

- 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2  0 0 .2  0 .4  0 .6  0 .8  1 

1 2 0 0 0 0  - 

8 0 0 0 0  - 

4 0 0 0 0  . . . . . . .  , 

_ _  

5.4. Hint." Transform the integral on the interval - 1  _< (_< +1 and use Gauss 

integration to evaluate it. It is suggested to follow the steps" 

(a) Express the coordinates of the points on the parabolic element in terms of 
using Eq. (5.63), namely 

x ( ~ )  - 4 . 3 0  ~ 1 ( ~ ) +  4 . 1 0  ~ / , 2 ( ~ ) +  3 . 8 0 , ~ : ~ ( ( )  

y(~) - 2.50 ~h~(~)+ 2.90'(~2(~)+ 3.20 ~h:~(~) 

(b) Find the expressions of r(~) and [J(~)l to obtain the integrand in the 

form 
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f ( 5 )  - ~p~ (~) gn [r(5)] IJ(5)l 

- - ( ( 1 -  () gn {x/[x(() - 4.15] 2 + [ y ( ( ) -  2.65] 2 } x 

J[ + [ 

(c) Check whether the integral is singular or near-singular. For this purpose 
evaluate ~ = ~o for which r(~) becomes minimum as well as the values 

of r(~o) and f(~o) (answer: ~o = -0 .56595534,  r(~0) = 0.08357687, 

f(~o) = -0 .49520518) .  Hence the integral is neither singular nor near- 

singular. This also becomes evident from the graph of the integrand 
shown in the figure. 

(d) Evaluate the integral using Gauss integration 

7_~ l f (~ )d~  ~ ~ f ( ~ k ) W k  -- I,, =~ 
1 k = l  

14 - -  -0.34181408 

I(~ - -0.35966759 

Is - -0.35957404 

0.2 

_ _  

- 0 . 2  

-0 .4  - 

-0 .6  - 

-0 .8 

, I , I , I , I 1 
I 1 ! I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

I I I I /  
I I I , ~  
I I I / I  
I I I / I 
I I I / I _ 
I I I/ I 

I I I I 
I I / I 
I I /I I 
I I / I I 

I I l I I 
I I / I I 
I I / I I 
I I/ I I 

l I l I 
I /I t I 

. I ~ I  I I 
I / I I I 

I I I 

J l I I I 
l t i l 
I I " I  I 

1 1 1 I 
I I I I 
I I I I 
I I I I 

I I f I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I 
I I I 
I I I 
t I I 
I I I 
I . . . . . .  I - - I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I 1 I 
I I I 
I I I 
I I I 
I I 1 

I 1 I I 
I I I I 
I I I I 
I I I I 

-1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2  0 0.2 0.4 0.6 0.8 1 

5.5. Hint." 
(a) Evaluate the length of the j - t h  element, 

. . . . . . .  

2 x/(z2 - zl )2 + (y2 y~ )2 g j . . . .  1.166190 
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(b) Use Eq. (5.27) together with Eqs. (5.32) and (5.35) to evaluate 9~ j . 

(c) Use Eq. (5.36) together with Eqs. (5.37) and (5.38) to evaluate g~ j . 

The influence coefficients, when the source node i coincides with nodes 1 
and 2 (local numbering) of the integration element j ,  are 

l j  l j  for node-i  a t  ~1 - -  --0.5" gl = --0.215355, g2 -- --0.039519 

for node-/  at ~2 -- +0.5" 912 J - - 0 . 0 4 6 0 8 7 ,  922 y = - 0 . 1 8 4 6 6 5  

Chapter 6 

6.1. Use program TORSCON to evaluate the required quantities for the three 
cross-sections. The computed answers along with the exact values or those 
obtained with other approximate solutions are given below in tabular form. 

(I) see Example 6.2 
(2) see Chapter 6, Ref. [ 19] 

6.2. Hint." Seek the solution as a sum of the homogeneous solution and a particu- 
lar one, 

~L - -  u o - t - u l  

(a) The particular solution is obtained according to the procedure described 
in Section 3.4.2 

1 
~7 2"/L 1 - -  ~ ~ X 

30 

which yields 
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U l  - ~ - -  

X(X 2 -t- y2) 

240 

(b) The homogeneous solution obtained from the boundary value problem 

V 2 u 0 - 0  in f2 

�9 (x + 
u0 = on F 

240 

using the program LABECON. 

Answer." u(a/2 ,  b/3) - 0.018 m employing N=200 boundary elements. 

6.3. Hint." Use program LABECONMU. 

6.4. Hint." At the insulated parts of the boundary it is Tn - 0. 

Answer." Values of the temperature T at selected points on the axis of sym- 
metry of the cross-section are given in the table below as obtained using 
LABECON with N=240. 

y 0.05 0.25 0.45 0.65 0.85 

T 14.54 32.67 50.82 67.35 77.86 

6.5. Hint." Modify program LABECON, according to the procedure presented in 
Section 4.9 (method of subdomains), so that it can be used for the analysis of 
composite domains. 

6.6. Hint." Use the program developed for the requirements of Problem 4.2. 

6.7. Hint.  Use program FLUIDCON. 

Answer:  Values of the velocity component "v,, at selected points of the outlet 
cross-section are given in the following table as obtained using FLUIDCON 
with N = 240. 

y 1.70 1.30 0.90 0.50 0.10 

'v,~ 0.484 0.492 0.503 0.512 0.516 
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Chapter 7 

7.1. Given the initial strains {Co} use Eq. (7.13) to establish the corresponding 

stresses {or0 }. Then substitute Eq. (7.26) into the equilibrium equation (7.18) 

with bx - by - 0 to obtain 

V 2 u + l  ~02u+ 02v, }+__1 b o = 0  
1 - 2u Ox2 OxOy G 

~72v + 1, 
1 - 2 u  

02u + 02---__~ v 
OxOy Oy 2 

where 

b2 _ _ (  o ,2 + -~  
( Ox Oy 

1 b o _ O  +-d 

+ 
Ox Oy 

The boundary tractions due to the initial strains are obtained by substituting 
Eq. (7.26) into Eqs. (7.22) and taking into account that 

t~ - t~, - t .  ~ - 0  

ty -- t,tj - tl} - - 0  

where L t. and t~ denote the total boundary tractions. The derived expressions 
are 

t ~ _ t  o ( o {} ) ,:r, ~ ~ O ' x  TAx - ~ -  Txy 7lg 

Therefore, the displacement field u0 and v0 due to initial strains is the one 

produced by the effective body forces b~, b,~ ~ in ~2 and the prescribed bound- 

ary tractions t~ ~ and t: ~ on F.  In this case, the boundary integral equations 

result from Eqs. (7.90)by replacing b~, b• and t~, t:j with b ~ b ~ and t~ J, 

t o , respectively. In solving this problem using program ELBECON, attention 
should be paid in restraining the rigid body motion, so that the matrix [H] 

can be inverted. 

7.2. The initial stress distribution caused by the temperature change A T(x,  y) is 

given by Eq. (7.28) and the effective body forces (see answer for Prob- 
lem 7.1 ) become 

b o _  E a 0 A T  = 0  and b o _  E c~ OAT = 0  
1 - - ~ 7 0 x  1 - - ~  Oy 



Appendix C Answers to selected problems 319 

while the boundary tractions become 

t o E a A  T 
- ~ nx - 222.22 nx and 

1 - 0 "  
to= E a A T  

1 - 0  
nu = 222.22 nu 

The solution of the problem is obtained following three steps: 

(a) Evaluation of the displacements produced by the temperature change. 
Due to the double symmetry of the cross-section the solution can be lim- 
ited to the lower left quadrant (see figure). This problem is solved using 
program ELBECON with the boundary conditions shown in the figure. 

(b) Solve the problem for the whole domain with the following boundary 
conditions: 

o u t e r  boundary."  u(O, y)  - -u"(O, y), ty(O, y) - 0 

v(~, 0) - - v"(~:, 0), 

~,~(2.5, v) - - u " ( 2 . 5 ,  v), 

t ~ ( x , 0 ) -  0 

t~(2.5, y) -- 0 

t~(z ,  1 .5)  - o, t~(~,  1 .5 )  - 0 

i n n e r  boundary."  t~ - 0, t:~ - 0 (traction-free) 

(c) Superimpose the solutions of steps (a) and (b). 

Numerical results obtained for N-348 boundary elements are given in the 
following table. 
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x = 0 x = 0.425 
Y 

v x l 0  a t. u x l 0  a v x l 0  a crx cry r~w 

0.3125 0.366 145.71 0.040 0.371 -166.29 15.90 21.50 

0.5125 0.577 120.34 0.115 0.595 -118.07 2.93 40.49 

0.9875 1.018 119.13 0.126 --0.616 -111.11 --1.93 --27.24 

1.1875 1.216 150.09 0.043 -0.477 -164.88 8.29 -12.87 

7.3. Hint." 

(a) Establish the displacement and stress fields for temperature change work- 
ing in two stages as in Problem 7.2, including, however, the body forces 

o 

b o = E c~ O T ,  b o _  E oe O T  
1 - P  Ox 1 - P  Oy 

which do not vanish in this case. Nevertheless, the domain integrals in- 
volving the body forces can be converted to boundary line integrals by 
means of Eqs. (7.139) and (7.140), since they are derived from a potential 

T ( V2T -- t7) ). For the needs of this problem, program ELBECON must 

be modified to include the vector {F} of Eq. (7.111) resulting from the 

presence of body forces. 

(b) Superimpose the solution of part (a) to that for internal pressure in order 
to obtain the total deformation and stresses in the pipe. 

7.4. Hint." Determine a particular solution 'u~, v~ using the relevant expressions 

derived in Example 7.1. Then employ program ELBECON after modifying 
appropriately the boundary conditions as indicated in Eqs. (7.124). 

7.5. Answer." 

uG -- UH -- 7.3699 • 10 -:~ m 

K,,t = 
P, ot,,l 2 • 750 kN/m • 0.60 m 

uc, 7.3699 • 10 -a m 
= 1.22118 • 105 kN/m 

It is worth mentioning that, modeling the given frame with three beam ele- 
ments (accounting also for shear deformation) and considering that the frame 
is clamped at the bottom of the two columns, the lateral displacement and 
corresponding stiffness are found to be 

Ubcam - - -  7.6 • 10-3 m 

K b c a m  - -  1.18421 • 105 kN/m 
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continuity conditions, 98 
flux continuity, 98, 99 
potential continuity, 98 

continuity equation, 187 

continuous elements, (see boundary 
elements) 

converting domain to boundary inte- 
grals, (see domain integrals) 

coordinate systems: 
global, 54, 108, 109, 118 
local, 54, 108, 109, 118 

coordinate transformation, 21,22, 54, 
118,131 
Jacobian, (see Jacobian of transfor- 

mation) 
non-singular (invertible), 22 

comer points, 30, 49, 114, 224 
curvilinear boundaries, 129 
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D 

Darcy's law, 193, 196 

deflection of elastic membranes, (see 
membranes) 

delta function, (see Dirac delta func- 
tion) 

derivatives of distance r ,  52, 216, 
221,285 

differential equations, 8 
elliptic type, 18, 44, 58, 83 
hyperbolic type, 18, 58 
parabolic type, 18, 58 

diffusion of ions, (see Fick's law) 

Dirac delta function, 8, 18, 20, 23, 26, 
35,213 
Jacobian of transformation, 22, 41 
one-dimensional, 20 

derivative, 22 
transformation from Cartesian to: 

curvilinear coordinates, 22 
polar coordinates, 24 

two-dimensional, 20, 21 
derivative, 23 

direction cosines, 146, 208, 213 

Dirichlet problem, 5, 25, 154, 176, 
180, 183 

discontinuous elements, (see bound- 
ary elements) 

discretization: 
boundary (BEM), 3 
boundary elements, (see boundary 

elements) 
composite domain, 97 
domain (FEM), 3, 58 
element numbering, 110 
elliptic domain, 80, 107, 108, 164 
mixed boundary conditions, 51, 75, 

92, 114 
rectangular domain, 75, 93 

divergence (of a vector), 16 

divergence theorem of Gauss, 7, 15, 
23, 147, 153 
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domain integrals: 
elasticity, (see body forces) 
evaluation, 57 
numerical evaluation, (see Gaus- 

sian integration) 
singular, 305 
transformation to boundary inte- 

grals, 36, 37, 60, 152, 153,305, 
307 
arbitrary function, 38, 58 
polynomial, 37 

domains, homogeneous, long and 
slender, 102 

domains with multiple boundaries, 85 

dot product, 16 

double integrals, (see Gaussian 
integration) 

Dual Reciprocity Method (DRM), 7, 
61, 181 
Poisson's equation, 58 

E 

effective elastic constants, 204 

elastic constants, 203,210 

elastic support, 175 

elasticity problem, 5, 6, 8,201 
anisotropic, 6 
body forces, 206, 209 
boundary conditions, 206 
boundary tractions, 208,209 
corner point, 224 
elastic strain, 208 
equilibrium equations, 205,210 
equilibrium of the body, 207 
initial strains, 208 

temperature variation, 209 
initial stresses, 208 

temperature variation, 209, 211 
integral representation of the solu- 

tion, 5 
Navier equations of equilibrium, 

206,211 
plane elasticity, 201 

body forces, (see body forces) 

boundary integral equations, 
224,228 
initial strains, 281 

boundary quantities, 230 
boundary tractions due to con- 

centrated unit force, 220 
displacements in the interior of 

the body, 232 
fundamental solution, 213, 217, 

218 
domain integrals, 307 

integral representation of the 
solution, 221,223 

integral representation of the 
stresses, 228 

matrices, evaluation: 
diagonal elements, 245,247 
off-diagonal elements, 244, 

246 
numerical solution of the bound- 

ary integral equations, 230 
plane strain, (see plane strain) 
plane stress, (see plane stress) 
program ELBECON.FOR, 241 
stresses due to concentrated unit 

force, 219 
stresses in the body, 233 
stresses on the boundary, 233 

reciprocity of displacements, 219 
stress function, (see Airy) 
thermoelasticity, 6 
total strain, 208 

elastodynamic problem, 6 

elastoplastic torsion, 6 

ELBECON.FOR, 9, 241 
arrays, 243 
examples, 263,273 
listing, 248 
macro flow chart, 242 
subroutines: 

ABMATREL, 241,247, 255 
GMATREL, 241,244, 251 
HMATREL, 241,246, 253 
INPUTEL, 241,244, 250 
LEQS, 248,256 
OUTPUTEL, 241,248,263 



REORDEREL, 241,248,257 
RLINTG, 248, 252 
RLINTH, 246, 248, 254 
SLINTH, 259 
SOLVEQ, 241,248, 256 
STRESSB, 241,248,261 
STRESSIN, 241,248,259 
UVINTER, 241,248,258 

variables, 241,243 

electric potential, (see Ohm's law) 

ELLIPSE- 1.FOR, 9, 81 

ELLIPSE-3.FOR, 9, 165 

elliptic domain, 79, 164 

elliptic problems, (see differential 
equations) 

ellipticity condition, 39 

equilibrium equations, 145,205 

essential condition, 29, 183 

examples: 
deflection of elastic triangular 

membrane, 176 
ELBECON.FOR, 263,273 
ELLIPSE- 1 .FOR, 81 
ELLIPSE-3.FOR, 165 
fluid flow, 192 
FLUIDCON.FOR, 193 
Gauss-Legendre integration, 296 
Gaussian integration over triangu- 

lar domain, 304 
heat transfer, 184 
integrand behavior for different 

source nodes, 116 
LABECON.FOR, 74, 79, 177, 184 
LABECONMU.FOR, 92 
near-singular integral evaluation 

with element subdivision, 138 
near-singular integrand behavior, 

136 
Neumann problem, 79 
particular solution of the Navier 

equations, 237 
particular solution of the Poisson 

equation, 36 
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plane strain (pipe subjected to in- 
ternal pressure), 273 

plane stress (clamped beam), 263 
potential problem: 

doubly connected domain, 92, 
184 

elliptic domain, 79 
square domain, 74 

RECT- 1.FOR, 74 
RECT-2.FOR, 92 
RECT-3.FOR, 169 
RECT-4.FOR, 264 
RECTEL-MU.FOR, 273 
singular influence coefficients, 125 
TORSCON.FOR, 164, 169 
torsion problem: 

elliptic cross-section, 164 
square cross-section, 169 

existence condition, (see Neumann 
problem) 

F 

Fick's law, 193 

finite differences, (see numerical dif- 
ferentiation) 

Finite Element Method (FEM), 2, 
235,272,273 
coefficient matrices, 5 
discretization, 3 
drawbacks, 2 
infinite domains, 2 

flexibility matrix, 205 

flexural rigidity (plate), 178 

flow through porous media (see 
Darcy's law), 

fluid flow, 187, 197 
continuity equation, 187 
example, 192 
fluid density, 187 
fluid velocity, 187 
inlet, 188, 192 
outlet, 188, 192 
program FLUIDCON.FOR, 189 
tranquility condition, 189 
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velocity field, 188 
velocity potential, 188 

FLUIDCON.FOR, 9, 189 
example, 193 
listing, 189 
subroutines: 

DERIV, 189, 190 
OUTPUT, 189, 192 

flux of a vector, 16, 40, 98, 193 
continuity, (see continuity condi- 

tions) 

Fourier's law, 98, 181, 193, 196 

frame, two-column, 282 
lateral stiffness, 282 

free space Green's function, 28 

fundamental solution, 4 
Laplace equation, 26 

derivatives, 52 
domain integrals, 305 

plane elasticity, 217, 218 
domain integrals, 307 

potential equation, 28 
potential problems in anisotropic 

bodies, 40 

G 

Galerkin functions, 215 

Galerkin vector, 215,236, 237 

Gauss elimination, 63,241 

Gauss-Green theorem, 13, 15, 23 

Gauss-Legendre integration, (see 
Gaussian integration) 

Gaussian integration, 8, 53, 57, 65, 
116, 133,246, 289 
abscissas, 53, 57, 295,297 
accuracy, 117 
double (domain) integrals, 57,298 

cells, 57, 234, 235 
domain discretization, 57 
multiplication of rules, 298 
rectangular domains, 298 

table of coordinates and 
weights, 299 

triangular domains, 300 
example, 304 
integration rule over trian- 

gles, 302 
table of coordinates and 

weights, 303 
triangular coordinate system, 

300, 302 
four-point quadrature, 65,246 
Gauss-Legendre integration, 293 

error, 294 
example, 296 
Legendre's polynomials, 294 
table of abscissas and weights, 

295 
Gauss points, 53, 116, 289, 293, 

299, 303 
integrals with logarithmic singular- 

ity, 298 
table of abscissas and weights, 

297 
integration of regular functions, 

289 
integration points, (see Gauss 

points), 123 
method of finite sectors, 298 
subintervals, 125, 138, 139 
weights, 53, 57, 123,289,293, 

295,297, 299, 303 

Gaussian quadrature, (see Gaussian 
integration) 

generalized Hooke's law, 171 
constitutive relations, 171 

gradient (of a scalar), 16 
gradient of temperature field, 181 

Green's function, 5 

Green's reciprocal identity, (see 
Green's second identity) 

Green's second identity, 8, 16, 17 
applications, 28, 29, 31, 33, 34, 37, 

38, 147, 152,240, 305 
general form, 17, 39 
multiply connected domains, 85 

Green's tensor, 218 



H 

harmonic operator, 16 
polar coordinates, 24, 27, 37,306 

heat conduction, (see heat transfer) 

heat flow, 99, 196, 197 

heat flux, 181 

heat transfer, 8, 98, 181 
ambient temperature, 183 
boundary conditions, 183 
conductivity matrix, 182, 183 

isotropic material, 182 
orthotropic material, 182 

equations, 181 
isotropic, 183 
orthotropic, 183 

example, 184 
heat flux, 181 
heat transfer coefficient, 183 
internal energy, 182 
specific heat, 182 

Hermite polynomials, 135 

hydrostatic pressure, 198 

hyperbolic problems, (see differential 
equations) 

hypersingular integrals, 140, 235,305 

ideal fluid, 187 

incompressible fluids, 8, 187 

indicial notation, 217,220, 221,223, 
228 

infinite domains, 2, 4 

influence coefficients: 
evaluation: 

diagonal elements ,56, 118, 122 
indirect evaluation, 127, 133 

off-diagonal elements, 53 
Laplace equation, 49, 53 

inside integration, 115, 118, 126, 133 

integral representation of the solution: 
Laplace equation, 30 
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plane elasticity, 5, 221 
stresses, 228 

potential problems in anisotropic 
bodies, 39 

integration by parts, 15, 175 

integration rules, (see numerical inte- 
gration) 

internal heat generation, 181 

International Association for Bound- 
ary Elements (IABEM), 7 

International Boundary Element Con- 
ferences, 140 

International Society for Boundary 
Elements (ISBE), 7 

interpolation polynomials, 105, 111, 
129, 135 
Hermite, 135 

inviscid fluid flow, 187 

irrotational flow, 8, 187 

Jacobian of transformation, 22, 55, 
I32 

K 

Kelvin's solution, 213 

kinematic condition, 29 

Kronecker delta, 50 

L 

LABECON.FOR, 9, 61,67, 189 
arrays, 63, 64 
examples, 74, 79, 177 
listing, 67 
macro flow chart, 62 
subroutines: 

ABMATR, 63, 66, 71 
DALPHA, 65, 71 
GMATR, 63, 64, 69 
HMATR, 63, 65, 70 
INPUT, 61,64, 68 
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LEQS, 66, 72 
OUTPUT, 63, 66, 74 
REORDER, 63, 66, 73 
RLINTC, 65, 69 
SLINTC, 65, 70 
SOLVEQ, 63, 66, 72 
UINTER, 63, 66, 73 

variables, 63 

LABECONMU.FOR, 9, 86 
example, 92 
listing, 87 
subroutines: 

GMATR, 86, 89 
HMATR, 86, 90 
INPUT, 86, 88 
UINTER, 86, 91 

Lam6 constants, 203,210 

laminar flow, 189 

Laplace equation, 5, 8, 25, 196 
boundary conditions, 25, 26 
boundary integral equation, 33 
composite domains, 96 
corner point, 30, 32 
derivatives of the solution, 53,104, 

189 
direct BEM, 28 
examples, 74, 79 
fundamental solution, 26 

derivatives, 52 
domain integrals, 305 

influence coefficients, 49, 52, 122 
derivatives, 53 
numerical evaluation, 55, 56, 

127 
integral representation of the de- 

rivatives of the solution, 46, 52, 
104 

integral representation of the solu- 
tion, 30 
boundary points, 32 
domain points, 30 

matrix equations, 50 
matrix partitioning, 51 
mixed boundary conditions, 28, 75, 

83, 92, 114 

multiply connected domain, 85 
programs: 

LABECON.FOR, 61 
LABECONMU.FOR, 86 

smooth boundary, 32, 33 
subdomains, 96, 102 

Laplace operator (see harmonic opera- 
tor) 

Legendre's orthogonal polynomials, 
293,294 

L'H6spital's rule, 124, 126 

line integrals, 53 
evaluation over linear elements, 

115 
numerical integration, (see Gaus- 

sian integration) 

linear elements, (see boundary ele- 
ments) 

loading, 2 

logarithmic singularity, 57, 118, 126, 
140 
analytical integration, 118 
integration by extracting the singu- 

larity, 124, 125, 134 
numerical integration, 123,298 
Stroud and Secrest approximation, 

123 

M 

mass conservation principle, 188 

material density, 181 

mathematical concepts, 13 

matrices, 5 
partitioning, 51 
potential problems, 50 
singular, 83,245 

mean value theorem, 20, 31,32,225, 
226, 235 

membranes (deflection of), 8, 196 
boundary value problem, 176 
elastic supports, 175 
example, 176 
prestress, 175 



strain components, 175 
strain energy, 175 
total potential energy, 175 
triangular membrane, 176 

analytical solution, 177 
deflection surface, 176 

mesh generators, 4 

method of coordinate transformation, 
137 

method of element subdivision, 137, 
139, 245 

method of subdomains, 96 
long and slender homogeneous do- 

mains, 102 

Microsoft FORTRAN PowerStation, 
79, 102, 103 

mixed problem, 26, 83, 92 

monoclinic material, 171 

multi-zone body, 96 

multiply connected domains, 85, 174 
example, 92, 184 
program listing, (see 

LABECONMU.FOR) 

N 

NASTRAN, 4 

natural condition, 29, 183 

Navier equations of equilibrium, 5, 
206 

Navier operator, 213,238,239 
fundamental solution, 217 

domain integrals, 307 
integral representation of the solu- 

tion, 221 
particular solution, 235,236, 238 

near-singular integrals, 136, 137 
coordinate transformation, 137 
element subdivision, 137, 139 

Neumann problem, 5, 25, 79, 83, 148, 
150, 183 
existence condition, 83, 146 
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non-dimensionalized shear moduli, 
173, 174 

non-smooth boundary, 30, 224 

nonviscous fluid flow, 187 

normal derivative, 17, 53,286 

normal unit vector, 14, 64, 86, 97 

numerical differentiation, 155,234, 
248 
backward differences, 157 
central difference, 156 
forward differences, 156 

numerical integration: 
Gaussian quadrature, (see Gaussian 

integration) 
integrals with logarithmic singular- 

ity, 123,298 
integration of regular functions, 

289 
Newton-Cotes formulae, 116, 138, 

289 
Simpson's rule, 116, 138,289 
trapezoidal rule, 116, 138,289 

O 

Ohm's law, 193, 196 

open domain, 64 

outside integration, 115, 116, 133 

P 

parabolic elements, (see boundary ele- 
ments) 

parabolic problems, (see differential 
equations) 

particular solution: 
Navier equation, 235,236, 238 
Poisson equation, 34, 37, 60, 177 

perfect fluid, 187 

plane elasticity, (see elasticity prob- 
lem) 

plane of material property symmetry, 
171 
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plane strain, 201 
boundary conditions, 207 
boundary tractions, 208 
compliance matrix, 205 
constitutive relations, 203,204 
effective elastic constants, 204 
equilibrium equations, 205 
example (pipe subjected to internal 

pressure), 273 
contours of stresses at the pipe 

cross-section, 278,279 
deformed pipe cross-section, 

278 
governing equations, 206 
initial strains, 281 
initial stresses due to temperature 

variation, 209 
kinematic relations, 202 
program ELBECON.FOR, 241 
reciprocal identity, 212, 238 
stiffness matrix, 205 
strain tensor, 202,204 
stress tensor, 203 
stress vector, 205 

plane stress, 201,209 
body forces, 209 
boundary tractions, 209, 211 
compliance matrix, 211 
constitutive relations, 210, 211 
effective elastic constants, 210 
equilibrium equations, 210, 211 
example (clamped beam), 263 
initial stresses due to temperature 

variation, 211 
program ELBECON.FOR, 241 
reciprocal identity, 213 
stiffness matrix, 211 

plate bending, 6, (see bending of sim- 
ply supported plates) 
simply supported, 8, 178 

point source, 26 
Poisson's equation, 8, 25, 176, 196 

boundary conditions, 25 
direct BEM, 3 4  
domain integrals, 57,305 

Dual Reciprocity Method, 58 
integral representation of the solu- 

tion, 34 
Green's identity, 34 

mixed boundary conditions, 34 
transformation to Laplace equation, 

34 
homogeneous solution, 36, 177 
particular solution, 34, 36, 176 

Poisson's ratio, 178 
polluted numerical results, 115 

potential equation, 25 
fundamental solution, 27,305 

potential theory, 5, 6, 8, 44 
boundary conditions, 25 
governing equation, 25 

Prandtl's stress function, (see torsion) 

prestress of membrane, (see mem- 
brane) 

projection of a vector, 16 

Q 
quadrature, (see numerical integra- 

tion) 

R 

radial basis functions series, 58 
multiquadrics, 61 
polynomial, 61 
thin plate splines, 61 

Rayleigh-Green identity, 6 

reciprocal identity, (see Betti's recip- 
rocal identity) 

RECT- 1 .FOR, 9, 74 

RECT-2.FOR, 9, 92 

RECT-3.FOR, 9, 169 

RECT-4.FOR, 9, 264 

RECTEL-MU.FOR, 9,273 
regularity condition at infinity, 128 

rigid body motion, 207, 232 

rigid body rotation, 151 



Robin problem, 26, 176, 183 

Saint-Venant torsion problem, (see 
torsion) 

self-adjoint operator, 18 

signum, 126 
shape functions, 111, 116 

continuity, 135 
cubic element, 142 
linear element, 111, 118 
parabolic (quadratic) element, 131, 

135 

shear wall, 209, 282 

singular integrals, 118, 140, 235 
Cauchy-type singularity (see 

Cauchy-type singularity) 
indirect method, 118, 133 
logarithmic singularity, (see loga- 

rithmic singularity) 

singular particular solution, (see fun- 
damental solution) 

source, 25, 26 

source density function, 58, 61 

specific heat, 182 

specific internal energy, 181 

stiffness matrix, 205, 211 

stiffness modulus, 175 

strain components, 145, 175 

strain energy, 175 

stress vector, 205 

subdomains, (see method of subdo- 
mains) 

summation convention, 15 

symbolic languages: 
Maple, 53, 116 
Mathematica, 53 

T 

tangential unit vector, 52 
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Taylor series expansions, 155, 156 

tensor, two-point second order, 218 

thermal conductivity, 98, 99 

thermal flux density, 181 

thermoelasticity, 6 

Timoshenko beam theory, 272,273 

TORSCON.FOR, 9, 157 
examples, 164, 169 
listing, 157 
subroutines: 

INPUT, 157, 158 
OUTPUT, 157, 163 
TORCENTER, 157, 160 
TORSTIF, 157, 162 
TORSTRESS, 157, 163 
UINTER, 157, 161 

torsion, 8, 44, 143, 151, 196, 197 
anisotropic bars, 171 

constitutive relations, 171 
torsional constant, 173 
twisting moment, 172 

boundary stress, 155, 157 
boundary value problem, 148 
composite bars, 44, 199 
constitutive relations, 145 
displacement components, 144 
elastoplastic, 6 
elliptic cross-section, 164 

contours of warping surface, 
168 

equilibrium equations, 145 
examples, 164, 169 
hollow cross-section, 155 
moment resultant, 148 
orthotropic materials, 173, 199 

non-dimensionalized shear 
moduli, 174 

program TORSCON.FOR, 157 
rotation of cross-section, 143 
solution: 

conjugate of warping function, 
154 

Prandtl's stress function, 154 
steps, 153 

shear stresses, 145, 150, 154, 155 
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square cross-section, 169 
analytical expressions, 169 
contours, 170 
warping function, 170 

strain components, 145 
strain energy, 151 

minimization conditions, 151 
stress resultants, 147 
torsional constant, 148, 151, 154, 

157, 173 
torsional rigidity, 148 
torsional stiffness coefficient, 148 
traction boundary conditions, 146 
twist center, 143, 149, 151, 157 
twisting moment, 148, 172 
warping function, 143, 145, 146, 

154 
anisotropic bar, 172 
Neumann problem, 148, 150 

total potential energy, 175 
principle, 175 

traction boundary conditions, 146 

traction components, 146, 208, 209 

transformation of coordinates, (see 
coordinate transformation) 

transformation of differential to 
boundary integral equations, 13 

transformation to complex domain, 
35, 36, 236 

triangular coordinate system, 300, 302 

V 

viscosity, 187 

W 

warping function, (see torsion) 

weighted residual form, 52, 79 
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